In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene Classification

计算机科学 人工智能 机器学习 利用 训练集 标记数据 监督学习 任务(项目管理) 变压器 领域(数学分析) 半监督学习 共同训练 模式识别(心理学) 数据挖掘 人工神经网络 物理 数学分析 量子力学 经济 电压 管理 计算机安全 数学
作者
Ivica Dimitrovski,Ivan Kitanovski,Nikola Simidjievski,Dragi Kocev
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5
标识
DOI:10.1109/lgrs.2024.3352926
摘要

We investigate the utility of in-domain self-supervised pre-training of vision models in the analysis of remote sensing imagery. Self-supervised learning (SSL) has emerged as a promising approach for remote sensing image classification due to its ability to exploit large amounts of unlabeled data. Unlike traditional supervised learning, SSL aims to learn representations of data without the need for explicit labels. This is achieved by formulating auxiliary tasks that can be used for pre-training models before fine-tuning them on a given downstream task. A common approach in practice to SSL pre-training is utilizing standard pre-training datasets, such as ImageNet. While relevant, such a general approach can have a sub-optimal influence on the downstream performance of models, especially on tasks from challenging domains such as remote sensing. In this paper, we analyze the effectiveness of SSL pre-training by employing the iBOT framework coupled with Vision transformers trained on Million-AID, a large and unlabeled remote sensing dataset. We present a comprehensive study of different self-supervised pre-training strategies and evaluate their effect across 14 downstream datasets with diverse properties. Our results demonstrate that leveraging large in-domain datasets for self-supervised pre-training consistently leads to improved predictive downstream performance, compared to the standard approaches found in practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jared应助Singhi采纳,获得10
刚刚
思源应助obsession采纳,获得10
刚刚
墨客发布了新的文献求助10
刚刚
qsh关闭了qsh文献求助
刚刚
阔达的冷霜完成签到,获得积分10
1秒前
1秒前
Hello应助YYH采纳,获得10
1秒前
心斋完成签到,获得积分10
1秒前
2秒前
科研通AI6应助122采纳,获得10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
小蘑菇应助二橦采纳,获得10
3秒前
4秒前
张先生完成签到,获得积分20
4秒前
yummy完成签到,获得积分10
5秒前
zhuzhuzhu发布了新的文献求助10
5秒前
无极微光应助阔达的冷霜采纳,获得20
6秒前
你好发布了新的文献求助10
7秒前
凉生发布了新的文献求助10
7秒前
8秒前
田様应助CYCY采纳,获得10
8秒前
CodeCraft应助M2106采纳,获得10
8秒前
8秒前
8秒前
SCI的芷蝶发布了新的文献求助10
9秒前
9秒前
10秒前
谢皮皮发布了新的文献求助10
10秒前
无花果应助Lee采纳,获得10
11秒前
nan发布了新的文献求助10
11秒前
11秒前
11秒前
尔尔发布了新的文献求助10
12秒前
12秒前
12秒前
淑文完成签到 ,获得积分10
13秒前
无极微光应助汉堡包采纳,获得20
13秒前
深情安青应助bakbak采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532279
求助须知:如何正确求助?哪些是违规求助? 4621012
关于积分的说明 14576204
捐赠科研通 4560859
什么是DOI,文献DOI怎么找? 2498989
邀请新用户注册赠送积分活动 1478948
关于科研通互助平台的介绍 1450218