亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In-Domain Self-Supervised Learning Improves Remote Sensing Image Scene Classification

计算机科学 人工智能 机器学习 利用 训练集 标记数据 监督学习 任务(项目管理) 变压器 领域(数学分析) 半监督学习 共同训练 模式识别(心理学) 数据挖掘 人工神经网络 物理 数学分析 量子力学 经济 电压 管理 计算机安全 数学
作者
Ivica Dimitrovski,Ivan Kitanovski,Nikola Simidjievski,Dragi Kocev
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5
标识
DOI:10.1109/lgrs.2024.3352926
摘要

We investigate the utility of in-domain self-supervised pre-training of vision models in the analysis of remote sensing imagery. Self-supervised learning (SSL) has emerged as a promising approach for remote sensing image classification due to its ability to exploit large amounts of unlabeled data. Unlike traditional supervised learning, SSL aims to learn representations of data without the need for explicit labels. This is achieved by formulating auxiliary tasks that can be used for pre-training models before fine-tuning them on a given downstream task. A common approach in practice to SSL pre-training is utilizing standard pre-training datasets, such as ImageNet. While relevant, such a general approach can have a sub-optimal influence on the downstream performance of models, especially on tasks from challenging domains such as remote sensing. In this paper, we analyze the effectiveness of SSL pre-training by employing the iBOT framework coupled with Vision transformers trained on Million-AID, a large and unlabeled remote sensing dataset. We present a comprehensive study of different self-supervised pre-training strategies and evaluate their effect across 14 downstream datasets with diverse properties. Our results demonstrate that leveraging large in-domain datasets for self-supervised pre-training consistently leads to improved predictive downstream performance, compared to the standard approaches found in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
花凉发布了新的文献求助10
9秒前
万能图书馆应助花凉采纳,获得10
16秒前
风趣的小夏完成签到 ,获得积分10
40秒前
乐乐应助张艺雯采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
糊涂的剑发布了新的文献求助10
1分钟前
张艺雯发布了新的文献求助10
1分钟前
bkagyin应助糊涂的剑采纳,获得10
1分钟前
shuang完成签到 ,获得积分10
2分钟前
2分钟前
vvvpsb发布了新的文献求助10
2分钟前
vvvpsb完成签到,获得积分10
2分钟前
brwen完成签到,获得积分10
3分钟前
蓝色天空完成签到,获得积分10
4分钟前
地尔硫卓发布了新的文献求助10
4分钟前
鹏笑完成签到,获得积分10
5分钟前
搜集达人应助Sci采纳,获得10
5分钟前
火星上的飞槐完成签到,获得积分10
5分钟前
5分钟前
Sci发布了新的文献求助10
5分钟前
xin完成签到,获得积分10
5分钟前
烨枫晨曦完成签到,获得积分10
5分钟前
隐形曼青应助Sci采纳,获得10
5分钟前
Kevin完成签到 ,获得积分10
6分钟前
6分钟前
Sci发布了新的文献求助10
6分钟前
VDC发布了新的文献求助30
7分钟前
HYQ完成签到 ,获得积分10
7分钟前
科目三应助hxgong采纳,获得10
7分钟前
VDC完成签到,获得积分0
7分钟前
8分钟前
Li发布了新的文献求助10
8分钟前
8分钟前
小饼干完成签到,获得积分10
8分钟前
小饼干发布了新的文献求助10
9分钟前
nojego完成签到,获得积分10
9分钟前
9分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232903
求助须知:如何正确求助?哪些是违规求助? 4402056
关于积分的说明 13699659
捐赠科研通 4268570
什么是DOI,文献DOI怎么找? 2342677
邀请新用户注册赠送积分活动 1339675
关于科研通互助平台的介绍 1296447