A Diagnostic Report Supervised Deep Learning Model Training Strategy for Diagnosis of COVID-19

计算机科学 可解释性 人工智能 推论 深度学习 机器学习 一般化 编码器 数学 操作系统 数学分析
作者
Shiqi Deng,Xing Zhang,Shancheng Jiang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:149: 110232-110232
标识
DOI:10.1016/j.patcog.2023.110232
摘要

COVID-19 is a highly contagious infectious disease that necessitates timely assessment and effective diagnosis, although it is no longer a health emergency. Most existing computer-aided diagnosis systems for COVID-19 can achieve high accuracy, but they show insufficient generalization performance and weak interpretability. To address these issues, we propose diagnostic report supervised contrastive learning (DRSCL), a model training strategy that incorporates textual information from medical reports into model pretraining and then only transfers the pretrained image encoder into model inference. Due to the issue of data recurrence in medical diagnosis reports, which is common in the medical domain and can cause nonconvergence of the pretraining stage of DRSCL, we improve the loss function calculation of contrastive learning by integrating an operation to merge identical text or image features. In addition, for the fine-tuning and inference stage of DRSCL, we design a hierarchical fine-tuning strategy to better evaluate the pretraining performance and importance of each module. In case study, we build a medical image-text pair dataset of lung diseases for pretraining, with samples collected from hospitals in East China, and then conduct the fine-tuning and inference operation of DRSCL with a publicly available SARS-CoV-2 dataset. The comparative experimental results show that DRSCL helps all involved image encoders obtain better classification accuracy and superior generalization performance in the given COVID-19-related diagnostic application. This finding indicates that DRSCL enhances deep models to learn more deep information with supervision of medical textual information. Furthermore, we adopt the Grad-CAM method to visualize pretrained models, and the results demonstrate that the DRSCL strategy is advantageous for improving model interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助陶醉的萧采纳,获得10
1秒前
xc完成签到,获得积分20
1秒前
1秒前
哈哈哈嗝发布了新的文献求助10
2秒前
2秒前
Dashihhhh完成签到,获得积分10
2秒前
2秒前
3秒前
动漫大师发布了新的文献求助10
3秒前
安静的千柳完成签到,获得积分20
4秒前
酷波er应助剪秋本宫头痛采纳,获得10
4秒前
甜甜甜发布了新的文献求助10
4秒前
5秒前
YaoZhang发布了新的文献求助10
5秒前
昏睡的蟠桃应助机灵蜡烛采纳,获得30
6秒前
谨慎无招发布了新的文献求助10
6秒前
害羞聋五发布了新的文献求助10
6秒前
6秒前
6秒前
时尚的秋天完成签到 ,获得积分10
6秒前
7秒前
热心玉兰发布了新的文献求助10
8秒前
柴柴发布了新的文献求助10
8秒前
卡卡完成签到,获得积分10
9秒前
9秒前
蟹蟹发布了新的文献求助10
10秒前
yatou5651发布了新的文献求助10
10秒前
bkagyin应助听风遇见采纳,获得10
11秒前
SciGPT应助NZX采纳,获得10
11秒前
情怀应助安静的千柳采纳,获得30
11秒前
11秒前
11秒前
richbrown发布了新的文献求助10
12秒前
snoopy发布了新的文献求助10
12秒前
楠瓜发布了新的文献求助10
13秒前
深情安青应助害羞聋五采纳,获得10
14秒前
烟花应助热心玉兰采纳,获得10
15秒前
16秒前
S77发布了新的文献求助10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744718
求助须知:如何正确求助?哪些是违规求助? 3287712
关于积分的说明 10054740
捐赠科研通 3003914
什么是DOI,文献DOI怎么找? 1649258
邀请新用户注册赠送积分活动 785217
科研通“疑难数据库(出版商)”最低求助积分说明 750960