Quantum and classical computational synergy for emerging contaminants management: Advanced insights into cytochrome P450 metabolic mechanisms

生化工程 细胞色素P450 污染 环境科学 环境化学 化学 计算生物学 计算机科学 生物 工程类 生态学 生物化学
作者
Xianzhi Huang,Lili Niu,Jie Chen,Lichao Li,Kashif Hayat,Weiping Liu
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:54 (24): 1827-1851
标识
DOI:10.1080/10643389.2024.2365907
摘要

Computational toxicology provides the basis for the accurate assessment and prediction of toxic effects at the molecular level. However, classical computing often lacks speed and accuracy for complex chemical systems, leading to bottlenecks. The emergence of quantum computing has the potential to fundamentally break through these constraints, allowing the exploration of toxic effects from molecular initiation events (MIEs). This review prospects the application of quantum computing in environmental science. It provides a brief overview of classical computational chemistry and quantum computing, elucidating the quantitative mapping between these two approaches. Cytochrome P450 (CYP) enzymes, an important biomarker for monitoring and identifying environmental risks of pollutants, is taken as an example to summarize the progress of classical algorithms in explaining its metabolic mechanism. By comparing the required runtimes of quantum and classical computing approaches, the review highlights the potential quantum advantage in high-precision chemical simulations, especially in large-scale CYP model calculations. A hybrid quantum-classical strategy is specially developed for the practical workflow of quantum computing in environmental science. By means of the close collaboration between theory and experiment, it shows great potential in deeply understanding the environmental impact of emerging pollutants and designing relevant environmental monitoring programs. This review can provide valuable clues for future sustainable solutions. Through the effective synergy between quantum computing development and precision management of environmental pollution, it is expected to revolutionize the way we understand and mitigate the impacts of emerging pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得30
1秒前
sutharsons应助科研通管家采纳,获得30
1秒前
归海含烟完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
shire应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
RC_Wang应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
匹诺曹发布了新的文献求助10
2秒前
唐画完成签到 ,获得积分10
2秒前
2秒前
2秒前
淡淡采白关注了科研通微信公众号
3秒前
tY完成签到,获得积分20
3秒前
傲娇的凡旋应助卢健辉采纳,获得10
4秒前
CodeCraft应助calbee采纳,获得10
4秒前
6秒前
6秒前
sw98318完成签到,获得积分10
7秒前
impala完成签到,获得积分10
7秒前
7秒前
欣喜访旋发布了新的文献求助10
7秒前
朱江涛完成签到 ,获得积分10
8秒前
角鸮完成签到,获得积分10
8秒前
zly完成签到 ,获得积分10
9秒前
雨霧雲完成签到,获得积分10
9秒前
qnqqq完成签到 ,获得积分10
10秒前
健壮的涑发布了新的文献求助10
10秒前
11秒前
11秒前
秋山伊夫完成签到,获得积分10
11秒前
入门的橙橙完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808