Segment Anything Model Combined with Multi-Scale Segmentation for Extracting Complex Cultivated Land Parcels in High-Resolution Remote Sensing Images

遥感 比例(比率) 分割 高分辨率 计算机科学 环境科学 地质学 地图学 人工智能 地理
作者
Zhongxin Huang,Haitao Jing,Yueming Liu,Xiaomei Yang,Zhihua Wang,Liu Xiaoliang,Ku Gao,Haofeng Luo
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (18): 3489-3489 被引量:1
标识
DOI:10.3390/rs16183489
摘要

Accurate cultivated land parcel data are an essential analytical unit for further agricultural monitoring, yield estimation, and precision agriculture management. However, the high degree of landscape fragmentation and the irregular shapes of cultivated land parcels, influenced by topography and human activities, limit the effectiveness of parcel extraction. The visual semantic segmentation model based on the Segment Anything Model (SAM) provides opportunities for extracting multi-form cultivated land parcels from high-resolution images; however, the performance of the SAM in extracting cultivated land parcels requires further exploration. To address the difficulty in obtaining parcel extraction that closely matches the true boundaries of complex large-area cultivated land parcels, this study used segmentation patches with cultivated land boundary information obtained from SAM unsupervised segmentation as constraints, which were then incorporated into the subsequent multi-scale segmentation. A combined method of SAM unsupervised segmentation and multi-scale segmentation was proposed, and it was evaluated in different cultivated land scenarios. In plain areas, the precision, recall, and IoU for cultivated land parcel extraction improved by 6.57%, 10.28%, and 9.82%, respectively, compared to basic SAM extraction, confirming the effectiveness of the proposed method. In comparison to basic SAM unsupervised segmentation and point-prompt SAM conditional segmentation, the SAM unsupervised segmentation combined with multi-scale segmentation achieved considerable improvements in extracting complex cultivated land parcels. This study confirms that, under zero-shot and unsupervised conditions, the SAM unsupervised segmentation combined with the multi-scale segmentation method demonstrates strong cross-region and cross-data source transferability and effectiveness for extracting complex cultivated land parcels across large areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuyang1991完成签到,获得积分10
1秒前
1秒前
2秒前
Li发布了新的文献求助10
2秒前
2秒前
冰美式好好喝呀完成签到,获得积分10
2秒前
米大王发布了新的文献求助20
2秒前
谭冬冬完成签到,获得积分10
3秒前
中国人完成签到,获得积分10
3秒前
wy.he完成签到,获得积分0
3秒前
4秒前
勤恳的素阴完成签到,获得积分20
5秒前
HH完成签到,获得积分10
5秒前
胖虎啊发布了新的文献求助10
5秒前
科研达人发布了新的文献求助10
6秒前
小龙发布了新的文献求助10
6秒前
hotwater发布了新的文献求助10
7秒前
今后应助Ash采纳,获得30
7秒前
7秒前
随遇而安发布了新的文献求助10
7秒前
猫咪乖乖爱你完成签到,获得积分10
7秒前
8秒前
8秒前
Bebetter完成签到,获得积分10
9秒前
聪明钢铁侠完成签到,获得积分10
10秒前
Kkyantong完成签到,获得积分10
10秒前
哈哈发布了新的文献求助20
11秒前
文艺的曼柔完成签到 ,获得积分10
12秒前
12秒前
飞快的鸭子完成签到,获得积分10
13秒前
不想开学吧完成签到 ,获得积分10
13秒前
胖虎啊完成签到,获得积分10
13秒前
丽丽关注了科研通微信公众号
13秒前
知123完成签到,获得积分10
14秒前
拉面完成签到,获得积分20
14秒前
iShine发布了新的文献求助10
14秒前
+1完成签到,获得积分10
14秒前
李子维完成签到 ,获得积分10
15秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Modern nutrition in health and disease 10th ed 1000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550760
求助须知:如何正确求助?哪些是违规求助? 3127089
关于积分的说明 9372085
捐赠科研通 2826248
什么是DOI,文献DOI怎么找? 1553613
邀请新用户注册赠送积分活动 725007
科研通“疑难数据库(出版商)”最低求助积分说明 714494