肝细胞癌
癌症研究
降级(电信)
细胞生物学
生物
化学
计算机科学
电信
作者
Pengbo Cao,Hongxia Chen,Ying Zhang,Qi Zhang,Mengting Shi,Huihui Han,Xiaoen Wang,Liang Jin,Bingqian Guo,Rongjiao Hao,Xi Zhao,Yuanfeng Li,Chengming Gao,Xinyi Liu,Yahui Wang,Aiqing Yang,Chenning Yang,Anfeng Si,Hua Li,Qingfeng Song,Fuchu He,Gangqiao Zhou
标识
DOI:10.1002/advs.202405459
摘要
Abstract Hepatocellular carcinomas (HCCs) are characterized by a vast spectrum of somatic copy number alterations (CNAs); however, their functional relevance is largely unknown. By performing a genome‐wide survey on prognosis‐associated focal CNAs in 814 HCC patients by an integrative computational framework based on transcriptomic data, genomic amplification is identified at 8q24.13 as a promising candidate. Further evidence is provided that the 8q24.13 amplification‐driven overexpression of Rab GTPase activating protein TBC1D31 exacerbates HCC growth and metastasis both in vitro and in vivo through activating Epidermal growth factor receptor (EGFR) signaling. Mechanistically, TBC1D31 acts as a Rab GTPase activating protein to catalyze GTP hydrolysis for Rab22A and then reduces the Rab22A‐mediated endolysosomal trafficking and degradation of EGFR. Notably, overexpression of TBC1D31 markedly increases the resistance of HCC cells to lenvatinib, whereas inhibition of the TBC1D31‐EGFR axis can reverse this resistance phenotype. This study highlights that TBC1D31 at 8q24.13 is a new critical oncogene, uncovers a novel mechanism of EGFR activation in HCC, and proposes the potential strategies for treating HCC patients with TBC1D31 amplification or overexpression.
科研通智能强力驱动
Strongly Powered by AbleSci AI