Prediction of incident atrial fibrillation using deep learning, clinical models and polygenic scores

医学 心房颤动 内科学 心脏病学
作者
Gilbert Jabbour,Alexis Nolin-Lapalme,Olivier Tastet,Denis Corbin,Paloma Jordà,A. Sowa,Jacques Delfrate,David Busseuil,Julie Hussin,Marie‐Pierre Dubé,Jean‐Claude Tardif,Léna Rivard,Laurent Macle,Julia Cadrin‐Tourigny,Paul Khairy,Robert Avram,Rafik Tadros
出处
期刊:European Heart Journal [Oxford University Press]
标识
DOI:10.1093/eurheartj/ehae595
摘要

Abstract Background and Aims Deep learning applied to electrocardiograms (ECG-AI) is an emerging approach for predicting atrial fibrillation or flutter (AF). This study introduces an ECG-AI model developed and tested at a tertiary cardiac centre, comparing its performance with clinical models and AF polygenic score (PGS). Methods Electrocardiograms in sinus rhythm from the Montreal Heart Institute were analysed, excluding those from patients with pre-existing AF. The primary outcome was incident AF at 5 years. An ECG-AI model was developed by splitting patients into non-overlapping data sets: 70% for training, 10% for validation, and 20% for testing. The performance of ECG-AI, clinical models, and PGS was assessed in the test data set. The ECG-AI model was externally validated in the Medical Information Mart for Intensive Care-IV (MIMIC-IV) hospital data set. Results A total of 669 782 ECGs from 145 323 patients were included. Mean age was 61 ± 15 years, and 58% were male. The primary outcome was observed in 15% of patients, and the ECG-AI model showed an area under the receiver operating characteristic (AUC-ROC) curve of .78. In time-to-event analysis including the first ECG, ECG-AI inference of high risk identified 26% of the population with a 4.3-fold increased risk of incident AF (95% confidence interval: 4.02–4.57). In a subgroup analysis of 2301 patients, ECG-AI outperformed CHARGE-AF (AUC-ROC = .62) and PGS (AUC-ROC = .59). Adding PGS and CHARGE-AF to ECG-AI improved goodness of fit (likelihood ratio test P < .001), with minimal changes to the AUC-ROC (.76–.77). In the external validation cohort (mean age 59 ± 18 years, 47% male, median follow-up 1.1 year), ECG-AI model performance remained consistent (AUC-ROC = .77). Conclusions ECG-AI provides an accurate tool to predict new-onset AF in a tertiary cardiac centre, surpassing clinical and PGS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
银雀w发布了新的文献求助10
2秒前
15122303完成签到,获得积分10
2秒前
苦杏仁应助vi采纳,获得10
2秒前
田様应助JuNNx不搞科研采纳,获得10
3秒前
4秒前
Owen应助天锁月痕采纳,获得10
6秒前
充电宝应助超帅沂采纳,获得10
6秒前
彭于晏应助lhl采纳,获得10
6秒前
科研丘卡皮完成签到,获得积分10
6秒前
beleve发布了新的文献求助10
6秒前
热情蜜蜂发布了新的文献求助10
7秒前
Cyrus完成签到,获得积分10
7秒前
哥叔华完成签到,获得积分10
7秒前
7秒前
8秒前
留胡子的书桃完成签到,获得积分10
8秒前
celety完成签到,获得积分10
8秒前
mll完成签到,获得积分10
9秒前
隐形曼青应助yongziwu采纳,获得10
10秒前
由哎发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
暮霭沉沉应助科研通管家采纳,获得10
12秒前
yufanhui应助科研通管家采纳,获得10
12秒前
梓泽丘墟应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
wwww0wwww应助科研通管家采纳,获得20
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
梓泽丘墟应助科研通管家采纳,获得10
13秒前
quhayley应助科研通管家采纳,获得10
13秒前
张瑜完成签到,获得积分10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
cobo完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160303
求助须知:如何正确求助?哪些是违规求助? 2811427
关于积分的说明 7892391
捐赠科研通 2470463
什么是DOI,文献DOI怎么找? 1315585
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038