支气管肺泡灌洗
免疫系统
呼吸系统
医学
炎症
纤维化
免疫学
肺
病理
内科学
作者
Chaofan Li,Wei Qian,Xiaoqin Wei,Harish Narasimhan,Yue Wu,Mohd Arish,In Su Cheon,Jinyi Tang,Gislane de Almeida Santos,Ying Li,Kamyar Sharifi,Ryan Kern,Robert Vassallo,Jie Sun
出处
期刊:Science Translational Medicine
[American Association for the Advancement of Science (AAAS)]
日期:2024-07-17
卷期号:16 (756)
被引量:2
标识
DOI:10.1126/scitranslmed.adn0136
摘要
Postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (PASC) represent an urgent public health challenge and are estimated to affect more than 60 million individuals globally. Although a growing body of evidence suggests that dysregulated immune reactions may be linked with PASC symptoms, most investigations have primarily centered around blood-based studies, with few focusing on samples derived from affected tissues. Furthermore, clinical studies alone often provide correlative insights rather than causal mechanisms. Thus, it is essential to compare clinical samples with relevant animal models and conduct functional experiments to understand the etiology of PASC. In this study, we comprehensively compared bronchoalveolar lavage fluid single-cell RNA sequencing data derived from clinical PASC samples and a mouse model of PASC. This revealed a pro-fibrotic monocyte-derived macrophage response in respiratory PASC, as well as abnormal interactions between pulmonary macrophages and respiratory resident T cells, in both humans and mice. Interferon-γ (IFN-γ) emerged as a key node mediating the immune anomalies in respiratory PASC. Neutralizing IFN-γ after the resolution of acute SARS-CoV-2 infection reduced lung inflammation and tissue fibrosis in mice. Together, our study underscores the importance of performing comparative analysis to understand the cause of PASC and suggests that the IFN-γ signaling axis might represent a therapeutic target.
科研通智能强力驱动
Strongly Powered by AbleSci AI