ESGC-MDA: Identifying miRNA-disease associations using enhanced Simple Graph Convolutional Networks

图形 计算机科学 简单(哲学) 计算生物学 理论计算机科学 生物 哲学 认识论
作者
Xuehua Bi,Chunyang Jiang,Cheng Yan,Kai Zhao,Linlin Zhang,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tcbb.2024.3486911
摘要

MiRNAs play an important role in the occurrence and development of human disease. Identifying potential miRNA-disease associations is valuable for disease diagnosis and treatment. Therefore, it is urgent to develop efficient computational methods for predicting potential miRNA-disease associations to reduce the cost and time associated with biological wet experiments. In addition, high-quality feature representation remains a challenge for miRNA-disease association prediction using graph neural network methods. In this paper, we propose a method named ESGC-MDA, which employs an enhanced Simple Graph Convolution Network to identify miRNA-disease associations. We first construct a bipartite attributed graph for miRNAs and diseases by computing multi-source similarity. Then, we enhance the feature representations of miRNA and disease nodes by applying two strategies in the simple convolution network, which include randomly dropping messages during propagation to ensure the model learns more reliable feature representations, and using adaptive weighting to aggregate features from different layers. Finally, we calculate the prediction scores of miRNA-disease pairs by using a fully connected neural network decoder. We conduct 5-fold cross-validation and 10-fold cross-validation on HDMM v2.0 and HMDD v3.2, respectively, and ESGC-MDA achieves better performance than state-of-the-art baseline methods. The case studies for cardiovascular disease, lung cancer and colon cancer also further confirm the effectiveness of ESGC-MDA. The source codes are available at https://github.com/bixuehua/ESGC-MDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助赫连涵柏采纳,获得10
刚刚
打打应助叶惠美采纳,获得10
1秒前
NexusExplorer应助4477采纳,获得10
1秒前
1秒前
zhutu完成签到,获得积分10
1秒前
boom完成签到,获得积分10
1秒前
汤汤杨杨完成签到,获得积分10
1秒前
2秒前
XXM0525发布了新的文献求助10
2秒前
干净傲霜应助动听的冷玉采纳,获得10
2秒前
科研通AI6应助梓翔采纳,获得10
2秒前
jiaojiao完成签到,获得积分10
3秒前
STOOd完成签到 ,获得积分10
3秒前
淡然水绿发布了新的文献求助10
4秒前
长安发布了新的文献求助30
4秒前
可乐加冰完成签到,获得积分20
4秒前
一只小羊完成签到,获得积分10
4秒前
Dream发布了新的文献求助10
5秒前
领导范儿应助从笙采纳,获得10
5秒前
斯文败类应助7890733采纳,获得10
5秒前
生信精准科研完成签到,获得积分10
6秒前
HYYY发布了新的文献求助10
6秒前
郭囯完成签到,获得积分10
6秒前
lilili完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
快乐科研完成签到,获得积分10
9秒前
9秒前
xcgh应助yy采纳,获得10
10秒前
10秒前
10秒前
10秒前
Emily完成签到,获得积分10
11秒前
小碗君完成签到,获得积分10
11秒前
长安完成签到,获得积分10
11秒前
汉堡包应助老实的乐儿采纳,获得10
11秒前
11秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204858
求助须知:如何正确求助?哪些是违规求助? 4383758
关于积分的说明 13650861
捐赠科研通 4241754
什么是DOI,文献DOI怎么找? 2327024
邀请新用户注册赠送积分活动 1324769
关于科研通互助平台的介绍 1276983