已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ESGC-MDA: Identifying miRNA-disease associations using enhanced Simple Graph Convolutional Networks

图形 计算机科学 简单(哲学) 计算生物学 理论计算机科学 生物 哲学 认识论
作者
Xuehua Bi,Chunyang Jiang,Cheng Yan,Kai Zhao,Linlin Zhang,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tcbb.2024.3486911
摘要

MiRNAs play an important role in the occurrence and development of human disease. Identifying potential miRNA-disease associations is valuable for disease diagnosis and treatment. Therefore, it is urgent to develop efficient computational methods for predicting potential miRNA-disease associations to reduce the cost and time associated with biological wet experiments. In addition, high-quality feature representation remains a challenge for miRNA-disease association prediction using graph neural network methods. In this paper, we propose a method named ESGC-MDA, which employs an enhanced Simple Graph Convolution Network to identify miRNA-disease associations. We first construct a bipartite attributed graph for miRNAs and diseases by computing multi-source similarity. Then, we enhance the feature representations of miRNA and disease nodes by applying two strategies in the simple convolution network, which include randomly dropping messages during propagation to ensure the model learns more reliable feature representations, and using adaptive weighting to aggregate features from different layers. Finally, we calculate the prediction scores of miRNA-disease pairs by using a fully connected neural network decoder. We conduct 5-fold cross-validation and 10-fold cross-validation on HDMM v2.0 and HMDD v3.2, respectively, and ESGC-MDA achieves better performance than state-of-the-art baseline methods. The case studies for cardiovascular disease, lung cancer and colon cancer also further confirm the effectiveness of ESGC-MDA. The source codes are available at https://github.com/bixuehua/ESGC-MDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lbwertyty发布了新的文献求助10
5秒前
木有完成签到 ,获得积分10
7秒前
8秒前
斯文败类应助lbwertyty采纳,获得10
9秒前
无辜烧鹅完成签到,获得积分10
9秒前
Gavin啥也不会完成签到,获得积分10
9秒前
小少发布了新的文献求助10
12秒前
12秒前
12秒前
一站到底发布了新的文献求助10
17秒前
小少完成签到,获得积分20
20秒前
22秒前
24秒前
一站到底完成签到,获得积分10
24秒前
yhc发布了新的文献求助10
29秒前
Raince发布了新的文献求助10
29秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
daishuheng完成签到 ,获得积分10
37秒前
38秒前
38秒前
等待的问夏完成签到 ,获得积分10
43秒前
无话可说发布了新的文献求助10
43秒前
PWG完成签到,获得积分10
43秒前
yhc完成签到,获得积分10
48秒前
Brain完成签到 ,获得积分10
53秒前
_张张完成签到 ,获得积分10
58秒前
快乐的若灵完成签到 ,获得积分10
1分钟前
无辜烧鹅发布了新的文献求助10
1分钟前
1分钟前
Samar完成签到 ,获得积分10
1分钟前
潇潇雨歇应助gaint采纳,获得10
1分钟前
潇潇雨歇应助gaint采纳,获得10
1分钟前
NexusExplorer应助gaint采纳,获得20
1分钟前
丘比特应助gaint采纳,获得10
1分钟前
李爱国应助gaint采纳,获得10
1分钟前
英姑应助gaint采纳,获得10
1分钟前
善学以致用应助gaint采纳,获得10
1分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346755
求助须知:如何正确求助?哪些是违规求助? 2973338
关于积分的说明 8658999
捐赠科研通 2653866
什么是DOI,文献DOI怎么找? 1453336
科研通“疑难数据库(出版商)”最低求助积分说明 672870
邀请新用户注册赠送积分活动 662808