ESGC-MDA: Identifying miRNA-disease associations using enhanced Simple Graph Convolutional Networks

图形 计算机科学 简单(哲学) 计算生物学 理论计算机科学 生物 认识论 哲学
作者
Xuehua Bi,Chunyang Jiang,Cheng Yan,Kai Zhao,Linlin Zhang,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/tcbb.2024.3486911
摘要

MiRNAs play an important role in the occurrence and development of human disease. Identifying potential miRNA-disease associations is valuable for disease diagnosis and treatment. Therefore, it is urgent to develop efficient computational methods for predicting potential miRNA-disease associations to reduce the cost and time associated with biological wet experiments. In addition, high-quality feature representation remains a challenge for miRNA-disease association prediction using graph neural network methods. In this paper, we propose a method named ESGC-MDA, which employs an enhanced Simple Graph Convolution Network to identify miRNA-disease associations. We first construct a bipartite attributed graph for miRNAs and diseases by computing multi-source similarity. Then, we enhance the feature representations of miRNA and disease nodes by applying two strategies in the simple convolution network, which include randomly dropping messages during propagation to ensure the model learns more reliable feature representations, and using adaptive weighting to aggregate features from different layers. Finally, we calculate the prediction scores of miRNA-disease pairs by using a fully connected neural network decoder. We conduct 5-fold cross-validation and 10-fold cross-validation on HDMM v2.0 and HMDD v3.2, respectively, and ESGC-MDA achieves better performance than state-of-the-art baseline methods. The case studies for cardiovascular disease, lung cancer and colon cancer also further confirm the effectiveness of ESGC-MDA. The source codes are available at https://github.com/bixuehua/ESGC-MDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
夏稚发布了新的文献求助10
1秒前
大力惜海发布了新的文献求助10
1秒前
Anthony发布了新的文献求助10
2秒前
oooaini完成签到,获得积分20
2秒前
2秒前
九月鹰飞完成签到,获得积分10
2秒前
2秒前
wuludie应助FENG采纳,获得10
2秒前
3秒前
4秒前
宋嬴一完成签到,获得积分10
4秒前
wanci应助科研人采纳,获得10
4秒前
卢浩完成签到,获得积分10
4秒前
霖槿完成签到,获得积分10
4秒前
王啦啦完成签到 ,获得积分20
4秒前
5秒前
阿七完成签到,获得积分10
5秒前
6秒前
红叶发布了新的文献求助10
6秒前
6秒前
7秒前
囡囡完成签到,获得积分10
7秒前
边宇发布了新的文献求助10
7秒前
Ying莹完成签到,获得积分10
7秒前
aizhujun完成签到,获得积分20
7秒前
甜甜亦巧完成签到,获得积分10
7秒前
王啦啦发布了新的文献求助10
7秒前
8秒前
热心的易烟完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
泡泡完成签到 ,获得积分10
10秒前
cc发布了新的文献求助10
10秒前
Anthony完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721