摘要
Water electrolysis represents a sustainable approach to produce green hydrogen (H 2 ); however, the high energy cost (H 2 O → 2H + + 2e - + ½O 2 , ∆H° = 275 kJ/mol H 2 , E° = −1.18 V) associated with water electrolysis and electricity cost (>$50/MWh) results in a minimum H 2 selling price ≈$4/kg H 2 . Hence, we need to find alternative process to generate H 2 to meet the current U.S. Department of Energy's (DOE's) Energy Earthshots of $1/kg H 2 in one decade. Wastewater electrolysis represents an alternative approach to generate H 2 with renewable sources by electrochemically oxidizing organic molecules to generate H 2 (e.g., CH 3 COOH + 2H 2 O → 2CO 2 + 8e - + 8H + , ∆H° = 53 kJ/mol, E° = −0.02 V,) which has up to 5 times lower energy requirement than water electrolysis. As opposed to water electrolysis that requires clean water streams, wastewater electrolysis uses readily available waste streams that need cleanup anyway to generate H 2 ; hence, integrating a second application in addition to H 2 generation. 1-3 In this work, we compare the performance of heterogeneous electrocatalysts for the electrocatalytic oxidation (ECO) of organic molecules present in wastewater as well as electrocatalysts for the H 2 evolution reaction (HER) at room temperature. ECO electrocatalysts were developed and tested using real wastewaters derived from several sources including the hydrothermal liquefaction (HTL) of food waste. We synthesized the ECO electrocatalysts using both platinum-group metals (PGM) as well as base-group metals (BGM) with equimolar loadings and tested them as a function of half-cell potential. Our results show that both PGM- and BGM-based bimetallics improve the activity and stability compared to the baseline RuO2-based catalysts 4-6 . We performed a preliminary techno-economic analysis and showed that the levelized costs of using this technology to process the wastewater alone is equivalent to that of traditional wastewater processing. The sale of the produced H 2 co-product will decrease the levelized processing cost below that of current wastewater processing. References Andrews, E.; Lopez-Ruiz, J. A.; Egbert, J. D.; Koh, K.; Sanyal, U.; Song, M.; Li, D.; Karkamkar, A. J.; Derewinski, M. A.; Holladay, J.; Gutiérrez, O. Y.; Holladay, J. D., Performance of Base and Noble Metals for Electrocatalytic Hydrogenation of Bio-Oil-Derived Oxygenated Compounds. ACS Sustainable Chemistry & Engineering 2020, 8 (11), 4407-4418. Lopez-Ruiz, J. A.; Qiu, Y.; Andrews, E.; Gutiérrez, O. Y.; Holladay, J. D., Electrocatalytic valorization into H2 and hydrocarbons of an aqueous stream derived from hydrothermal liquefaction. Journal of Applied Electrochemistry 2021, 51 (1), 107-118. Lopez-Ruiz, J. A.; Andrews, E.; Akhade, S. A.; Lee, M.-S.; Koh, K.; Sanyal, U.; Yuk, S. F.; Karkamkar, A. J.; Derewinski, M. A.; Holladay, J.; Glezakou, V.-A.; Rousseau, R.; Gutiérrez, O. Y.; Holladay, J. D., Understanding the Role of Metal and Molecular Structure on the Electrocatalytic Hydrogenation of Oxygenated Organic Compounds. ACS Catalysis 2019, 9 (11), 9964-9972. Qiu, Y.; Lopez-Ruiz, J. A.; Zhu, G.; Engelhard, M. H.; Gutiérrez, O. Y.; Holladay, J. D., Electrocatalytic decarboxylation of carboxylic acids over RuO2 and Pt nanoparticles. Appl. Catal. B-Environ. 2022, 305 , 121060. Lopez-Ruiz, J. A.; Qiu, Y.; Andrews, E.; Gutiérrez, O. Y.; Holladay, J. D., Electrocatalytic valorization into H2 and hydrocarbons of an aqueous stream derived from hydrothermal liquefaction. J. Appl. Electrochem. 2021, 51 (1), 107-118. Qiu, Y.; Lopez-Ruiz, J. A.; Sanyal, U.; Andrews, E.; Gutiérrez, O. Y.; Holladay, J. D., Anodic electrocatalytic conversion of carboxylic acids on thin films of RuO2, IrO2, and Pt. Appl. Catal. B-Environ. 2020, 277 , 119277. Figure 1