DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT images

工件(错误) 还原(数学) 人工智能 扩散 计算机科学 计算机视觉 数学 物理 几何学 热力学
作者
Tianxiao Cai,Xiang Li,Chenglan Zhong,Wei Tang,Jixiang Guo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (11): 6712-6724 被引量:1
标识
DOI:10.1109/jbhi.2024.3439729
摘要

X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple iterations often suffer from accumulative error, resulting in lower-quality restoration outcomes. In this work, we innovatively present a generalized diffusion model for Metal Artifact Reduction (DiffMAR). The proposed method utilizes a linear degradation process to simulate the physical phenomenon of metal artifact formation in CT images and directly learn an iterative restoration process from paired CT images in the reverse process. During the reverse process of DiffMAR, a Time-Latent Adjustment (TLA) module is designed to adjust time embedding at the latent level, thereby minimizing the accumulative error during iterative restoration. We also designed a structure information extraction (SIE) module to utilize linear interpolation data in the image domain, guiding the generation of anatomical structures during the iterative restoring. This leads to more accurate and robust shadow-free image generation. Comprehensive analysis, including both synthesized data and clinical evidence, confirms that our proposed method surpasses the current state-of-the-art (SOTA) MAR methods in terms of both image generation quality and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingmishensi发布了新的文献求助10
1秒前
1秒前
wsx发布了新的文献求助10
2秒前
研友_VZG7GZ应助asdadadad采纳,获得10
2秒前
3秒前
暴龙战士发布了新的文献求助10
3秒前
火星发布了新的文献求助10
3秒前
彭于晏应助健康的不悔采纳,获得10
4秒前
小蘑菇应助www采纳,获得10
4秒前
6秒前
芥末完成签到,获得积分10
8秒前
9秒前
9秒前
小二郎应助Reip379采纳,获得10
9秒前
11秒前
雨竹发布了新的文献求助30
11秒前
12秒前
acihk发布了新的文献求助10
14秒前
202422040716发布了新的文献求助10
15秒前
15秒前
zszs2发布了新的文献求助80
17秒前
17秒前
FashionBoy应助Lucky采纳,获得10
18秒前
仰望发布了新的文献求助10
18秒前
张皓123发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
香蕉觅云应助犹豫的依波采纳,获得10
21秒前
cq发布了新的文献求助20
23秒前
Reip379发布了新的文献求助10
24秒前
Candice应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
25秒前
千纸鹤发布了新的文献求助10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
小芳应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
26秒前
剑舞红颜笑完成签到,获得积分10
26秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346170
求助须知:如何正确求助?哪些是违规求助? 2972936
关于积分的说明 8657033
捐赠科研通 2653348
什么是DOI,文献DOI怎么找? 1453090
科研通“疑难数据库(出版商)”最低求助积分说明 672741
邀请新用户注册赠送积分活动 662595