EXPRESS: AI-Human Hybrids for Marketing Research: Leveraging LLMs as Collaborators

营销 业务
作者
Neeraj K. Arora,Ishita Chakraborty,Yohei Nishimura
出处
期刊:Journal of Marketing [SAGE Publishing]
被引量:21
标识
DOI:10.1177/00222429241276529
摘要

The authors’ central premise is that a human-LLM hybrid approach leads to efficiency and effectiveness gains in the marketing research process. In qualitative research, they show that LLMs can assist in both data generation and analysis; LLMs effectively create sample characteristics, generate synthetic respondents, and conduct and moderate in-depth interviews. The AI-human hybrid generates information-rich, coherent data that surpasses human-only data in depth and insightfulness and matches human performance in data analysis tasks of generating themes and summaries. Evidence from expert judges shows that humans and LLMs possess complementary skills; the human-LLM hybrid outperforms its human-only or LLM-only counterpart. For quantitative research, the LLM correctly picks the answer direction and valence, with the quality of synthetic data significantly improving through few-shot learning and retrieval-augmented generation. The authors demonstrate the value of the AI-human hybrid by collaborating with a Fortune 500 food company and replicating a 2019 qualitative and quantitative study using GPT-4. For their empirical investigation, the authors design the system architecture and prompts to create personas, ask questions, and obtain responses from synthetic respondents. They provide roadmaps for integrating LLMs into qualitative and quantitative marketing research and conclude that LLMs serve as valuable collaborators in the insight generation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qhtwld完成签到,获得积分10
2秒前
自信问枫完成签到 ,获得积分10
3秒前
99完成签到,获得积分10
4秒前
公西凝芙完成签到,获得积分10
5秒前
5秒前
科目三应助哈哈采纳,获得10
6秒前
7秒前
兴奋渊思完成签到 ,获得积分10
8秒前
9秒前
宋宋完成签到,获得积分20
9秒前
SYLH应助Hermit采纳,获得10
9秒前
百事从欢发布了新的文献求助10
11秒前
深情安青应助念姬采纳,获得10
12秒前
清晨完成签到 ,获得积分10
12秒前
12秒前
Orange应助吕健采纳,获得10
13秒前
幽默的妍完成签到 ,获得积分10
13秒前
15秒前
15秒前
yookia应助wu采纳,获得10
17秒前
18秒前
19秒前
21秒前
科研通AI2S应助论文顺利采纳,获得10
21秒前
22秒前
23秒前
百事从欢完成签到,获得积分10
23秒前
打打应助stone采纳,获得10
23秒前
温柔以蓝完成签到,获得积分10
24秒前
乐宝完成签到,获得积分10
25秒前
小圆圈发布了新的文献求助10
25秒前
25秒前
28秒前
28秒前
29秒前
lusuoshan完成签到,获得积分10
30秒前
化工牛马完成签到,获得积分10
32秒前
单纯的映真完成签到,获得积分10
32秒前
32秒前
JamesPei应助科研通管家采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966955
求助须知:如何正确求助?哪些是违规求助? 3512400
关于积分的说明 11163031
捐赠科研通 3247238
什么是DOI,文献DOI怎么找? 1793759
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432