EXPRESS: AI-Human Hybrids for Marketing Research: Leveraging LLMs as Collaborators

营销 业务
作者
Neeraj K. Arora,Ishita Chakraborty,Yohei Nishimura
出处
期刊:Journal of Marketing [SAGE]
标识
DOI:10.1177/00222429241276529
摘要

The authors’ central premise is that a human-LLM hybrid approach leads to efficiency and effectiveness gains in the marketing research process. In qualitative research, they show that LLMs can assist in both data generation and analysis; LLMs effectively create sample characteristics, generate synthetic respondents, and conduct and moderate in-depth interviews. The AI-human hybrid generates information-rich, coherent data that surpasses human-only data in depth and insightfulness and matches human performance in data analysis tasks of generating themes and summaries. Evidence from expert judges shows that humans and LLMs possess complementary skills; the human-LLM hybrid outperforms its human-only or LLM-only counterpart. For quantitative research, the LLM correctly picks the answer direction and valence, with the quality of synthetic data significantly improving through few-shot learning and retrieval-augmented generation. The authors demonstrate the value of the AI-human hybrid by collaborating with a Fortune 500 food company and replicating a 2019 qualitative and quantitative study using GPT-4. For their empirical investigation, the authors design the system architecture and prompts to create personas, ask questions, and obtain responses from synthetic respondents. They provide roadmaps for integrating LLMs into qualitative and quantitative marketing research and conclude that LLMs serve as valuable collaborators in the insight generation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
心心发布了新的文献求助10
2秒前
风中黎昕发布了新的文献求助10
3秒前
5秒前
warren发布了新的文献求助10
6秒前
8秒前
8秒前
8秒前
8秒前
8秒前
酷酷的半烟完成签到,获得积分10
8秒前
不配.应助希勤采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
帅气小鸽子完成签到,获得积分20
9秒前
9秒前
ASZXDW完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134969
求助须知:如何正确求助?哪些是违规求助? 2785927
关于积分的说明 7774469
捐赠科研通 2441746
什么是DOI,文献DOI怎么找? 1298163
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825