AI–Human Hybrids for Marketing Research: Leveraging Large Language Models (LLMs) as Collaborators

营销 业务
作者
Neeraj K. Arora,Ishita Chakraborty,Yohei Nishimura
出处
期刊:Journal of Marketing [SAGE]
卷期号:89 (2): 43-70 被引量:65
标识
DOI:10.1177/00222429241276529
摘要

The authors’ central premise is that a human–LLM (large language model) hybrid approach leads to efficiency and effectiveness gains in the marketing research process. In qualitative research, they show that LLMs can assist in both data generation and analysis; LLMs effectively create sample characteristics, generate synthetic respondents, and conduct and moderate in-depth interviews. The AI–human hybrid generates information-rich, coherent data that surpasses human-only data in depth and insightfulness and matches human performance in data analysis tasks of generating themes and summaries. Evidence from expert judges shows that humans and LLMs possess complementary skills; the human–LLM hybrid outperforms its human-only or LLM-only counterpart. For quantitative research, the LLM correctly picks the answer direction and valence, with the quality of synthetic data significantly improving through few-shot learning and retrieval-augmented generation. The authors demonstrate the value of the AI–human hybrid by collaborating with a Fortune 500 food company and replicating a 2019 qualitative and quantitative study using GPT-4. For their empirical investigation, the authors design the system architecture and prompts to create personas, ask questions, and obtain responses from synthetic respondents. They provide road maps for integrating LLMs into qualitative and quantitative marketing research and conclude that LLMs serve as valuable collaborators in the insight generation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TARS发布了新的文献求助10
刚刚
刚刚
曾元发布了新的文献求助10
1秒前
小王同学完成签到 ,获得积分10
1秒前
LL发布了新的文献求助10
1秒前
田哲完成签到 ,获得积分10
1秒前
今后应助张姐采纳,获得10
2秒前
3秒前
于水清发布了新的文献求助20
5秒前
lovt123发布了新的文献求助10
5秒前
6秒前
王圈完成签到 ,获得积分10
6秒前
缓慢的誉发布了新的文献求助10
8秒前
臭弟弟你别摆了完成签到,获得积分10
9秒前
丑鸭子完成签到,获得积分10
10秒前
11秒前
陈末应助77seven采纳,获得10
11秒前
senli2018发布了新的文献求助10
12秒前
浮游应助答题不卡采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
Battery应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
云海0620应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
Jasper应助神仙没有草原采纳,获得10
14秒前
14秒前
14秒前
14秒前
领导范儿应助TARS采纳,获得10
15秒前
浮游应助小刘采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474