超细纤维
材料科学
聚己内酯
微流控
生物医学工程
生物相容性
止痛药
纤维接头
纳米技术
外科
医学
聚合物
麻醉
复合材料
冶金
作者
Yunan Peng,Yixuan Shang,Junyi Che,Yunru Yu,Yuanjin Zhao,Xiaoping Gu
标识
DOI:10.1002/adhm.202402420
摘要
Sutures are the most commonly used wound repair method after surgery. However, addressing delayed recovery and pain management remains a significant challenge. Here, microfibers are developed from microfluidic spinning with long-lasting analgesia capabilities for sutures. By using a solvent extraction manner, the polycaprolactone (PCL) microfibers encapsulated with ropivacaine (ROP), a well-known analgesic, can be continuously obtained from microfluidics. The intrinsic property of PCL and the advantage of microfluidic spinning technique impart the microfiber with highly controlled morphologies, mechanical strengths, as well as drug release. After exploring their biocompatibility both at in vitro and in vivo levels, the microfibers are directly applied to wound suture. The results demonstrate the lasting analgesic effect of the microfiber on mice with incision pain, highlighting its potential as promising suture for post-surgery treatments. It is anticipated that the multifunctional analgesic sutures produced through microfluidic spinning will pave the way for utilizing fibers as effective sutures in clinical incision wound treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI