已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A systematic literature analysis of multi-organ cancer diagnosis using deep learning techniques

计算机科学 癌症 人工智能 深度学习 医学 机器学习 医学物理学 内科学
作者
Jaspreet Kaur,Prabhpreet Kaur
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:179: 108910-108910
标识
DOI:10.1016/j.compbiomed.2024.108910
摘要

Cancer is becoming the most toxic ailment identified among individuals worldwide. The mortality rate has been increasing rapidly every year, which causes progression in the various diagnostic technologies to handle this illness. The manual procedure for segmentation and classification with a large set of data modalities can be a challenging task. Therefore, a crucial requirement is to significantly develop the computer-assisted diagnostic system intended for the initial cancer identification. This article offers a systematic review of Deep Learning approaches using various image modalities to detect multi-organ cancers from 2012 to 2023. It emphasizes the detection of five supreme predominant tumors, i.e., breast, brain, lung, skin, and liver. Extensive review has been carried out by collecting research and conference articles and book chapters from reputed international databases, i.e., Springer Link, IEEE Xplore, Science Direct, PubMed, and Wiley that fulfill the criteria for quality evaluation. This systematic review summarizes the overview of convolutional neural network model architectures and datasets used for identifying and classifying the diverse categories of cancer. This study accomplishes an inclusive idea of ensemble deep learning models that have achieved better evaluation results for classifying the different images into cancer or healthy cases. This paper will provide a broad understanding to the research scientists within the domain of medical imaging procedures of which deep learning technique perform best over which type of dataset, extraction of features, different confrontations, and their anticipated solutions for the complex problems. Lastly, some challenges and issues which control the health emergency have been discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
余三心完成签到,获得积分10
2秒前
3秒前
爆米花应助Dasha采纳,获得30
9秒前
怡然的一凤完成签到 ,获得积分10
9秒前
9秒前
Allen完成签到,获得积分10
16秒前
16秒前
余三心发布了新的文献求助10
16秒前
18秒前
66完成签到,获得积分10
21秒前
21秒前
21秒前
23秒前
冯冯完成签到 ,获得积分10
26秒前
26秒前
KXC发布了新的文献求助10
26秒前
研友_VZG7GZ应助菠萝披萨采纳,获得10
27秒前
28秒前
贪玩夜玉完成签到 ,获得积分10
32秒前
生动邴完成签到 ,获得积分10
34秒前
鸡蛋饼卷发布了新的文献求助10
34秒前
36秒前
丘比特应助timekeeper1307采纳,获得10
36秒前
小马甲应助流星采纳,获得10
39秒前
41秒前
KXC完成签到,获得积分10
43秒前
46秒前
yyyalles应助zou采纳,获得10
48秒前
子衿青青发布了新的文献求助10
49秒前
DT发布了新的文献求助10
51秒前
斯文棒球完成签到 ,获得积分10
53秒前
科研通AI2S应助王王采纳,获得10
55秒前
56秒前
LZH完成签到,获得积分20
57秒前
LF完成签到,获得积分10
57秒前
无花果应助北栀采纳,获得10
58秒前
Orange应助DT采纳,获得10
58秒前
贺飞风发布了新的文献求助10
59秒前
Singularity应助美丽易云采纳,获得30
59秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142377
求助须知:如何正确求助?哪些是违规求助? 2793285
关于积分的说明 7806265
捐赠科研通 2449541
什么是DOI,文献DOI怎么找? 1303349
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300