A systematic literature analysis of multi-organ cancer diagnosis using deep learning techniques

计算机科学 癌症 人工智能 深度学习 医学 机器学习 医学物理学 内科学
作者
Jaspreet Kaur,Prabhpreet Kaur
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108910-108910
标识
DOI:10.1016/j.compbiomed.2024.108910
摘要

Cancer is becoming the most toxic ailment identified among individuals worldwide. The mortality rate has been increasing rapidly every year, which causes progression in the various diagnostic technologies to handle this illness. The manual procedure for segmentation and classification with a large set of data modalities can be a challenging task. Therefore, a crucial requirement is to significantly develop the computer-assisted diagnostic system intended for the initial cancer identification. This article offers a systematic review of Deep Learning approaches using various image modalities to detect multi-organ cancers from 2012 to 2023. It emphasizes the detection of five supreme predominant tumors, i.e., breast, brain, lung, skin, and liver. Extensive review has been carried out by collecting research and conference articles and book chapters from reputed international databases, i.e., Springer Link, IEEE Xplore, Science Direct, PubMed, and Wiley that fulfill the criteria for quality evaluation. This systematic review summarizes the overview of convolutional neural network model architectures and datasets used for identifying and classifying the diverse categories of cancer. This study accomplishes an inclusive idea of ensemble deep learning models that have achieved better evaluation results for classifying the different images into cancer or healthy cases. This paper will provide a broad understanding to the research scientists within the domain of medical imaging procedures of which deep learning technique perform best over which type of dataset, extraction of features, different confrontations, and their anticipated solutions for the complex problems. Lastly, some challenges and issues which control the health emergency have been discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11发布了新的文献求助30
1秒前
KM完成签到,获得积分10
2秒前
2秒前
yhbk完成签到 ,获得积分10
6秒前
siu完成签到 ,获得积分10
6秒前
缓慢发布了新的文献求助30
6秒前
6秒前
2240920060发布了新的文献求助10
11秒前
烛光完成签到 ,获得积分10
11秒前
12秒前
NexusExplorer应助王萌萌采纳,获得30
12秒前
12秒前
11完成签到,获得积分20
13秒前
l玖应助个性跳跳糖采纳,获得10
14秒前
炎星语发布了新的文献求助10
15秒前
16秒前
宫_发布了新的文献求助10
17秒前
陈瑞娟完成签到 ,获得积分10
17秒前
wanci应助wch采纳,获得10
18秒前
脑洞疼应助沉默的谷秋采纳,获得10
19秒前
谨言发布了新的文献求助30
19秒前
炎星语完成签到,获得积分10
20秒前
123完成签到,获得积分20
21秒前
22秒前
kirirto完成签到,获得积分10
23秒前
飘逸的吐司完成签到 ,获得积分10
24秒前
飞翔的小武66完成签到,获得积分10
24秒前
打打应助sun采纳,获得10
24秒前
2240920060完成签到,获得积分20
25秒前
研友_LOK59L完成签到,获得积分10
28秒前
Jasper应助小陆采纳,获得10
29秒前
李健应助712采纳,获得10
29秒前
田様应助缓慢采纳,获得10
30秒前
32秒前
34秒前
清脆大门完成签到,获得积分10
34秒前
OO圈圈完成签到,获得积分10
34秒前
蒲云海发布了新的文献求助10
35秒前
CipherSage应助wangxiaobin采纳,获得10
37秒前
hsx发布了新的文献求助10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993