A systematic literature analysis of multi-organ cancer diagnosis using deep learning techniques

计算机科学 癌症 人工智能 深度学习 医学 机器学习 医学物理学 内科学
作者
Jaspreet Kaur,Prabhpreet Kaur
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108910-108910
标识
DOI:10.1016/j.compbiomed.2024.108910
摘要

Cancer is becoming the most toxic ailment identified among individuals worldwide. The mortality rate has been increasing rapidly every year, which causes progression in the various diagnostic technologies to handle this illness. The manual procedure for segmentation and classification with a large set of data modalities can be a challenging task. Therefore, a crucial requirement is to significantly develop the computer-assisted diagnostic system intended for the initial cancer identification. This article offers a systematic review of Deep Learning approaches using various image modalities to detect multi-organ cancers from 2012 to 2023. It emphasizes the detection of five supreme predominant tumors, i.e., breast, brain, lung, skin, and liver. Extensive review has been carried out by collecting research and conference articles and book chapters from reputed international databases, i.e., Springer Link, IEEE Xplore, Science Direct, PubMed, and Wiley that fulfill the criteria for quality evaluation. This systematic review summarizes the overview of convolutional neural network model architectures and datasets used for identifying and classifying the diverse categories of cancer. This study accomplishes an inclusive idea of ensemble deep learning models that have achieved better evaluation results for classifying the different images into cancer or healthy cases. This paper will provide a broad understanding to the research scientists within the domain of medical imaging procedures of which deep learning technique perform best over which type of dataset, extraction of features, different confrontations, and their anticipated solutions for the complex problems. Lastly, some challenges and issues which control the health emergency have been discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
压缩完成签到 ,获得积分0
3秒前
不二完成签到,获得积分10
3秒前
半钱半夏完成签到,获得积分20
3秒前
HORO完成签到,获得积分10
3秒前
4秒前
蒋宁发布了新的文献求助10
5秒前
5秒前
朴素的不乐完成签到 ,获得积分10
5秒前
能干的杨柿子完成签到,获得积分10
6秒前
Yuuki完成签到,获得积分10
6秒前
乐乐应助haha哈哈哈采纳,获得10
6秒前
ayan发布了新的文献求助10
6秒前
秦坦发布了新的文献求助20
8秒前
iW完成签到 ,获得积分10
8秒前
wer发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
可乐乐完成签到 ,获得积分10
11秒前
Wss完成签到 ,获得积分10
11秒前
简单点完成签到 ,获得积分10
12秒前
XiaoBinCom发布了新的文献求助10
13秒前
高晨博完成签到 ,获得积分20
14秒前
我是老大应助ayan采纳,获得10
14秒前
H华ua应助隐形的妙之采纳,获得30
14秒前
feedyoursoul完成签到 ,获得积分10
14秒前
15秒前
liwen发布了新的文献求助10
16秒前
葫芦娃发布了新的文献求助10
16秒前
现代孤萍完成签到 ,获得积分10
16秒前
wrl2023完成签到,获得积分10
17秒前
我是老大应助蒋宁采纳,获得10
17秒前
追寻清完成签到,获得积分10
17秒前
lmr完成签到,获得积分10
18秒前
wer完成签到,获得积分10
19秒前
naiyouqiu1989发布了新的文献求助10
20秒前
20秒前
21秒前
XiaoBinCom完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911338
求助须知:如何正确求助?哪些是违规求助? 4186859
关于积分的说明 13001611
捐赠科研通 3954670
什么是DOI,文献DOI怎么找? 2168382
邀请新用户注册赠送积分活动 1186856
关于科研通互助平台的介绍 1094206