A systematic literature analysis of multi-organ cancer diagnosis using deep learning techniques

计算机科学 癌症 人工智能 深度学习 医学 机器学习 医学物理学 内科学
作者
Jaspreet Kaur,Prabhpreet Kaur
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108910-108910
标识
DOI:10.1016/j.compbiomed.2024.108910
摘要

Cancer is becoming the most toxic ailment identified among individuals worldwide. The mortality rate has been increasing rapidly every year, which causes progression in the various diagnostic technologies to handle this illness. The manual procedure for segmentation and classification with a large set of data modalities can be a challenging task. Therefore, a crucial requirement is to significantly develop the computer-assisted diagnostic system intended for the initial cancer identification. This article offers a systematic review of Deep Learning approaches using various image modalities to detect multi-organ cancers from 2012 to 2023. It emphasizes the detection of five supreme predominant tumors, i.e., breast, brain, lung, skin, and liver. Extensive review has been carried out by collecting research and conference articles and book chapters from reputed international databases, i.e., Springer Link, IEEE Xplore, Science Direct, PubMed, and Wiley that fulfill the criteria for quality evaluation. This systematic review summarizes the overview of convolutional neural network model architectures and datasets used for identifying and classifying the diverse categories of cancer. This study accomplishes an inclusive idea of ensemble deep learning models that have achieved better evaluation results for classifying the different images into cancer or healthy cases. This paper will provide a broad understanding to the research scientists within the domain of medical imaging procedures of which deep learning technique perform best over which type of dataset, extraction of features, different confrontations, and their anticipated solutions for the complex problems. Lastly, some challenges and issues which control the health emergency have been discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈基米德举报yourenpkma123求助涉嫌违规
1秒前
DTP发布了新的文献求助10
1秒前
暴躁壮壮完成签到 ,获得积分10
2秒前
千里发布了新的文献求助10
4秒前
4秒前
4秒前
J.完成签到 ,获得积分10
5秒前
元气马完成签到,获得积分10
5秒前
清晨完成签到,获得积分10
6秒前
6秒前
芙瑞完成签到 ,获得积分10
7秒前
yznfly应助尼可刹米洛贝林采纳,获得10
7秒前
你好发布了新的文献求助10
8秒前
心理可达鸭完成签到,获得积分10
8秒前
王贾贾发布了新的文献求助10
9秒前
007完成签到,获得积分10
10秒前
科研通AI6应助虚心盼夏采纳,获得10
10秒前
WEITAIBAO发布了新的文献求助10
10秒前
wikkk完成签到,获得积分10
11秒前
11秒前
jjh发布了新的文献求助10
12秒前
13秒前
淅淅沥沥完成签到,获得积分10
13秒前
科研通AI2S应助普外科老白采纳,获得10
13秒前
不安的蜗牛完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
zhang完成签到,获得积分10
15秒前
科研通AI6应助wikkk采纳,获得10
15秒前
15秒前
眼睛大羽毛完成签到,获得积分20
19秒前
19秒前
舒心抽屉发布了新的文献求助10
19秒前
Ava应助听风遇见采纳,获得10
20秒前
21秒前
21秒前
22秒前
Ginger完成签到,获得积分20
22秒前
23秒前
标致的问晴完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259101
求助须知:如何正确求助?哪些是违规求助? 4420900
关于积分的说明 13761392
捐赠科研通 4294658
什么是DOI,文献DOI怎么找? 2356512
邀请新用户注册赠送积分活动 1352924
关于科研通互助平台的介绍 1313807