Screening of genes co-associated with osteoporosis and chronic HBV infection based on bioinformatics analysis and machine learning

小桶 基因 列线图 支持向量机 Lasso(编程语言) 人工智能 计算生物学 卡帕 基因表达 机器学习 生物 计算机科学 生物信息学 医学 数学 转录组 遗传学 肿瘤科 几何学 万维网
作者
Jia Yang,Weiguang Yang,Yue Hu,Linjian Tong,Pei Chen,Li Liu,Bei Jiang,Sun Zy
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1472354
摘要

Objective To identify HBV-related genes (HRGs) implicated in osteoporosis (OP) pathogenesis and develop a diagnostic model for early OP detection in chronic HBV infection (CBI) patients. Methods Five public sequencing datasets were collected from the GEO database. Gene differential expression and LASSO analyses identified genes linked to OP and CBI. Machine learning algorithms (random forests, support vector machines, and gradient boosting machines) further filtered these genes. The best diagnostic model was chosen based on accuracy and Kappa values. A nomogram model based on HRGs was constructed and assessed for reliability. OP patients were divided into two chronic HBV-related clusters using non-negative matrix factorization. Differential gene expression analysis, Gene Ontology, and KEGG enrichment analyses explored the roles of these genes in OP progression, using ssGSEA and GSVA. Differences in immune cell infiltration between clusters and the correlation between HRGs and immune cells were examined using ssGSEA and the Pearson method. Results Differential gene expression analysis of CBI and combined OP dataset identified 822 and 776 differentially expressed genes, respectively, with 43 genes intersecting. Following LASSO analysis and various machine learning recursive feature elimination algorithms, 16 HRGs were identified. The support vector machine emerged as the best predictive model based on accuracy and Kappa values, with AUC values of 0.92, 0.83, 0.74, and 0.7 for the training set, validation set, GSE7429, and GSE7158, respectively. The nomogram model exhibited AUC values of 0.91, 0.79, and 0.68 in the training set, GSE7429, and GSE7158, respectively. Non-negative matrix factorization divided OP patients into two clusters, revealing statistically significant differences in 11 types of immune cell infiltration between clusters. Finally, intersecting the HRGs obtained from LASSO analysis with the HRGs identified three genes. Conclusion This study successfully identified HRGs and developed an efficient diagnostic model based on HRGs, demonstrating high accuracy and strong predictive performance across multiple datasets. This research not only offers new insights into the complex relationship between OP and CBI but also establishes a foundation for the development of early diagnostic and personalized treatment strategies for chronic HBV-related OP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
寒鸦浮水应助阔达东蒽采纳,获得30
1秒前
WW完成签到,获得积分10
1秒前
Orange应助小短腿飞行员采纳,获得50
3秒前
dddhzzz发布了新的文献求助10
3秒前
Albert完成签到,获得积分10
3秒前
Gracebing发布了新的文献求助10
3秒前
汪汪完成签到,获得积分10
3秒前
4秒前
李健应助舒一一采纳,获得10
4秒前
4秒前
4秒前
张靖发布了新的文献求助10
4秒前
学术rookie应助颜颜采纳,获得10
4秒前
小马甲应助hanxin108采纳,获得10
4秒前
汉天完成签到,获得积分10
5秒前
自信的高山完成签到,获得积分10
6秒前
神揽星辰入梦完成签到,获得积分10
6秒前
211发布了新的文献求助10
6秒前
淡定小白菜完成签到,获得积分10
7秒前
XY完成签到,获得积分10
7秒前
庄彧完成签到 ,获得积分10
7秒前
猫南北完成签到,获得积分10
7秒前
lily完成签到,获得积分10
7秒前
8秒前
ps2666完成签到 ,获得积分10
8秒前
dddhzzz完成签到,获得积分10
8秒前
8秒前
lab完成签到 ,获得积分0
8秒前
Viikey完成签到,获得积分0
8秒前
Heyouatpome完成签到,获得积分10
9秒前
曙光发布了新的文献求助10
9秒前
9秒前
一枚研究僧完成签到,获得积分0
10秒前
vic完成签到,获得积分10
10秒前
自渡完成签到 ,获得积分10
10秒前
11秒前
fosca完成签到,获得积分10
11秒前
11秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009254
求助须知:如何正确求助?哪些是违规求助? 3549107
关于积分的说明 11300780
捐赠科研通 3283530
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886168
科研通“疑难数据库(出版商)”最低求助积分说明 811267