亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Screening of genes co-associated with osteoporosis and chronic HBV infection based on bioinformatics analysis and machine learning

小桶 基因 列线图 支持向量机 Lasso(编程语言) 人工智能 计算生物学 卡帕 基因表达 机器学习 生物 计算机科学 生物信息学 医学 数学 转录组 遗传学 肿瘤科 几何学 万维网
作者
Jia Yang,Weiguang Yang,Yue Hu,Linjian Tong,Pei Chen,Li Liu,Bei Jiang,Sun Zy
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1472354
摘要

Objective To identify HBV-related genes (HRGs) implicated in osteoporosis (OP) pathogenesis and develop a diagnostic model for early OP detection in chronic HBV infection (CBI) patients. Methods Five public sequencing datasets were collected from the GEO database. Gene differential expression and LASSO analyses identified genes linked to OP and CBI. Machine learning algorithms (random forests, support vector machines, and gradient boosting machines) further filtered these genes. The best diagnostic model was chosen based on accuracy and Kappa values. A nomogram model based on HRGs was constructed and assessed for reliability. OP patients were divided into two chronic HBV-related clusters using non-negative matrix factorization. Differential gene expression analysis, Gene Ontology, and KEGG enrichment analyses explored the roles of these genes in OP progression, using ssGSEA and GSVA. Differences in immune cell infiltration between clusters and the correlation between HRGs and immune cells were examined using ssGSEA and the Pearson method. Results Differential gene expression analysis of CBI and combined OP dataset identified 822 and 776 differentially expressed genes, respectively, with 43 genes intersecting. Following LASSO analysis and various machine learning recursive feature elimination algorithms, 16 HRGs were identified. The support vector machine emerged as the best predictive model based on accuracy and Kappa values, with AUC values of 0.92, 0.83, 0.74, and 0.7 for the training set, validation set, GSE7429, and GSE7158, respectively. The nomogram model exhibited AUC values of 0.91, 0.79, and 0.68 in the training set, GSE7429, and GSE7158, respectively. Non-negative matrix factorization divided OP patients into two clusters, revealing statistically significant differences in 11 types of immune cell infiltration between clusters. Finally, intersecting the HRGs obtained from LASSO analysis with the HRGs identified three genes. Conclusion This study successfully identified HRGs and developed an efficient diagnostic model based on HRGs, demonstrating high accuracy and strong predictive performance across multiple datasets. This research not only offers new insights into the complex relationship between OP and CBI but also establishes a foundation for the development of early diagnostic and personalized treatment strategies for chronic HBV-related OP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7_2U1发布了新的文献求助10
2秒前
2秒前
7_2U1完成签到,获得积分20
15秒前
22秒前
23秒前
Panther完成签到,获得积分10
27秒前
58秒前
RE完成签到 ,获得积分10
59秒前
量子星尘发布了新的文献求助30
1分钟前
paannqi完成签到,获得积分10
1分钟前
zone54188完成签到,获得积分10
1分钟前
1分钟前
Wa1Zh0u发布了新的文献求助30
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
liman发布了新的文献求助30
1分钟前
summer完成签到,获得积分10
1分钟前
噜噜完成签到,获得积分10
2分钟前
隐形曼青应助噜噜采纳,获得30
2分钟前
2分钟前
小珂完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
愿景发布了新的文献求助10
4分钟前
平常寄容发布了新的文献求助10
4分钟前
我是老大应助徐志豪采纳,获得10
4分钟前
平常寄容完成签到,获得积分20
4分钟前
Wa1Zh0u完成签到,获得积分20
4分钟前
bkagyin应助愿景采纳,获得10
5分钟前
5分钟前
归尘应助liman采纳,获得10
5分钟前
Twonej应助Wa1Zh0u采纳,获得30
5分钟前
5分钟前
Jasper应助科研通管家采纳,获得30
5分钟前
Akim应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
yg发布了新的文献求助10
5分钟前
5分钟前
5分钟前
BowieHuang应助Wa1Zh0u采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401