已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Screening of genes co-associated with osteoporosis and chronic HBV infection based on bioinformatics analysis and machine learning

小桶 基因 列线图 支持向量机 Lasso(编程语言) 人工智能 计算生物学 卡帕 基因表达 机器学习 生物 计算机科学 生物信息学 医学 数学 转录组 遗传学 肿瘤科 几何学 万维网
作者
Jia Yang,Weiguang Yang,Yue Hu,Linjian Tong,Pei Chen,Li Liu,Bei Jiang,Sun Zy
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1472354
摘要

Objective To identify HBV-related genes (HRGs) implicated in osteoporosis (OP) pathogenesis and develop a diagnostic model for early OP detection in chronic HBV infection (CBI) patients. Methods Five public sequencing datasets were collected from the GEO database. Gene differential expression and LASSO analyses identified genes linked to OP and CBI. Machine learning algorithms (random forests, support vector machines, and gradient boosting machines) further filtered these genes. The best diagnostic model was chosen based on accuracy and Kappa values. A nomogram model based on HRGs was constructed and assessed for reliability. OP patients were divided into two chronic HBV-related clusters using non-negative matrix factorization. Differential gene expression analysis, Gene Ontology, and KEGG enrichment analyses explored the roles of these genes in OP progression, using ssGSEA and GSVA. Differences in immune cell infiltration between clusters and the correlation between HRGs and immune cells were examined using ssGSEA and the Pearson method. Results Differential gene expression analysis of CBI and combined OP dataset identified 822 and 776 differentially expressed genes, respectively, with 43 genes intersecting. Following LASSO analysis and various machine learning recursive feature elimination algorithms, 16 HRGs were identified. The support vector machine emerged as the best predictive model based on accuracy and Kappa values, with AUC values of 0.92, 0.83, 0.74, and 0.7 for the training set, validation set, GSE7429, and GSE7158, respectively. The nomogram model exhibited AUC values of 0.91, 0.79, and 0.68 in the training set, GSE7429, and GSE7158, respectively. Non-negative matrix factorization divided OP patients into two clusters, revealing statistically significant differences in 11 types of immune cell infiltration between clusters. Finally, intersecting the HRGs obtained from LASSO analysis with the HRGs identified three genes. Conclusion This study successfully identified HRGs and developed an efficient diagnostic model based on HRGs, demonstrating high accuracy and strong predictive performance across multiple datasets. This research not only offers new insights into the complex relationship between OP and CBI but also establishes a foundation for the development of early diagnostic and personalized treatment strategies for chronic HBV-related OP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
darxpq完成签到,获得积分10
4秒前
jxx完成签到,获得积分10
5秒前
6秒前
葱饼完成签到 ,获得积分10
8秒前
10秒前
12秒前
ding应助lily88采纳,获得10
13秒前
伊笙完成签到 ,获得积分10
13秒前
wasiwan完成签到,获得积分10
16秒前
huanglu发布了新的文献求助200
18秒前
小鱼发布了新的文献求助10
21秒前
彭于晏应助huanglu采纳,获得10
24秒前
25秒前
追三完成签到 ,获得积分10
33秒前
36秒前
红星路吃饼子的派大星完成签到 ,获得积分10
37秒前
3080完成签到 ,获得积分10
37秒前
MOMOJI发布了新的文献求助10
40秒前
44秒前
44秒前
居蓝完成签到 ,获得积分10
49秒前
南宫炽滔完成签到 ,获得积分10
53秒前
一号小玩家完成签到,获得积分10
53秒前
MOMOJI完成签到,获得积分20
58秒前
激昂的微笑完成签到,获得积分10
1分钟前
科研通AI2S应助研究员2采纳,获得10
1分钟前
小蜜峰儿完成签到 ,获得积分10
1分钟前
1分钟前
sue完成签到 ,获得积分10
1分钟前
二牛发布了新的文献求助10
1分钟前
MCCCCC_6发布了新的文献求助10
1分钟前
jindui完成签到 ,获得积分10
1分钟前
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
1分钟前
he完成签到 ,获得积分10
1分钟前
江沉晚吟完成签到 ,获得积分10
1分钟前
zqzq0308发布了新的文献求助10
1分钟前
zmx完成签到 ,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793538
关于积分的说明 7806775
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303425
科研通“疑难数据库(出版商)”最低求助积分说明 626871
版权声明 601314