Deep Network Regularization for Phasebased Magnetic Resonance Electrical Properties Tomography with Stein's Unbiased Risk Estimator

磁共振成像 估计员 断层摄影术 网络断层扫描 正规化(语言学) 数学 计算机科学 物理 人工智能 统计 医学 放射科 光学 推论
作者
Chuanjiang Cui,Kyu‐Jin Jung,Mohammed A. Al‐masni,Jun‐Hyeong Kim,Soo‐Yeon Kim,Mina Park,Shao Ying Huang,Se Young Chun,Donghyun Kim
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:3
标识
DOI:10.1109/tbme.2024.3438270
摘要

Magnetic resonance imaging (MRI) can extract the tissue conductivity values from in vivo data using the so-called phase-based magnetic resonance electrical properties tomography (MR-EPT). However, this procedure suffers from noise amplification caused by the use of the Laplacian operator. To counter this issue, we propose a novel preprocessing denoiser for magnetic resonance transceive phase images, operating in an unsupervised manner. Inspired by the deep image prior approach, we apply the random initialization of a convolutional neural network, which enforces an implicit regularization. Additionally, we introduce Stein's unbiased risk estimator, which is the unbiased estimator of the mean square error for optimizing the network without the need for label images. This modification not only tackles the overfitting problem inherent in the deep image prior approach but also operates within a purely unsupervised framework. In addition, instead of using phase images, we use real and imaginary images, which aligns with the theoretical model of the risk estimator. Our generative model needs neither the preparation of training datasets nor prior training procedure, and it maintains adaptability across various resolutions and signal-to-noise ratio levels. In testing. our method significantly diminished residual error remaining in phase maps, quantitatively as well as qualitatively, for both phantom and simulated brain data. Furthermore, it outperformed other denoising methods in reducing noise amplification and boundary error. When applied to healthy volunteer and patient data, the proposed method revealed reduced error in the reconstructed conductivity maps, with conductivity values aligning well with established literature values. To the best of our knowledge, this is the first blind approach using a purely unsupervised denoising framework that can implement a 2D phase-based MR-EPT reconstruction algorithm. The source code is available at https://github.com/Yonsei-MILab/Implicit-Regularization-forMREPT-with-SURE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳傲安完成签到,获得积分10
刚刚
刚刚
Feng YIYI发布了新的文献求助10
1秒前
风中冰蝶完成签到,获得积分10
2秒前
小蘑菇应助专注的惜文采纳,获得10
2秒前
3秒前
王留勇完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
慕青应助的能用纸采纳,获得30
5秒前
希望天下0贩的0应助qingxuan采纳,获得10
5秒前
5秒前
科研通AI2S应助云山枫叶采纳,获得10
6秒前
egg发布了新的文献求助10
6秒前
6秒前
6秒前
zbclzf完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
空白格完成签到 ,获得积分10
7秒前
8秒前
8秒前
萂昕完成签到 ,获得积分10
8秒前
lw完成签到,获得积分10
9秒前
小九九发布了新的文献求助10
9秒前
阴香萍发布了新的文献求助10
9秒前
jade完成签到,获得积分10
9秒前
天天向上完成签到,获得积分10
9秒前
10秒前
Qiao发布了新的文献求助10
10秒前
SPULY完成签到,获得积分10
11秒前
徐磊完成签到,获得积分10
11秒前
11秒前
蓝胖子发布了新的文献求助10
11秒前
zhabgyyy完成签到,获得积分10
11秒前
CipherSage应助沉默的半凡采纳,获得10
12秒前
maodoujie发布了新的文献求助10
12秒前
直率书包发布了新的文献求助10
12秒前
帅气忆南发布了新的文献求助10
12秒前
几木完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652526
求助须知:如何正确求助?哪些是违规求助? 4787640
关于积分的说明 15060403
捐赠科研通 4811049
什么是DOI,文献DOI怎么找? 2573602
邀请新用户注册赠送积分活动 1529411
关于科研通互助平台的介绍 1488273