Deep Network Regularization for Phasebased Magnetic Resonance Electrical Properties Tomography with Stein's Unbiased Risk Estimator

磁共振成像 估计员 断层摄影术 网络断层扫描 正规化(语言学) 数学 计算机科学 物理 人工智能 统计 医学 放射科 光学 推论
作者
Chuanjiang Cui,Kyu‐Jin Jung,Mohammed A. Al‐masni,Jun‐Hyeong Kim,Soo‐Yeon Kim,Mina Park,Shao Ying Huang,Se Young Chun,Donghyun Kim
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tbme.2024.3438270
摘要

Magnetic resonance imaging (MRI) can extract the tissue conductivity values from in vivo data using the so-called phase-based magnetic resonance electrical properties tomography (MR-EPT). However, this procedure suffers from noise amplification caused by the use of the Laplacian operator. To counter this issue, we propose a novel preprocessing denoiser for magnetic resonance transceive phase images, operating in an unsupervised manner. Inspired by the deep image prior approach, we apply the random initialization of a convolutional neural network, which enforces an implicit regularization. Additionally, we introduce Stein's unbiased risk estimator, which is the unbiased estimator of the mean square error for optimizing the network without the need for label images. This modification not only tackles the overfitting problem inherent in the deep image prior approach but also operates within a purely unsupervised framework. In addition, instead of using phase images, we use real and imaginary images, which aligns with the theoretical model of the risk estimator. Our generative model needs neither the preparation of training datasets nor prior training procedure, and it maintains adaptability across various resolutions and signal-to-noise ratio levels. In testing. our method significantly diminished residual error remaining in phase maps, quantitatively as well as qualitatively, for both phantom and simulated brain data. Furthermore, it outperformed other denoising methods in reducing noise amplification and boundary error. When applied to healthy volunteer and patient data, the proposed method revealed reduced error in the reconstructed conductivity maps, with conductivity values aligning well with established literature values. To the best of our knowledge, this is the first blind approach using a purely unsupervised denoising framework that can implement a 2D phase-based MR-EPT reconstruction algorithm. The source code is available at https://github.com/Yonsei-MILab/Implicit-Regularization-forMREPT-with-SURE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小li完成签到 ,获得积分10
刚刚
小蘑菇应助细腻晓露采纳,获得10
刚刚
又胖了完成签到,获得积分10
1秒前
Eva完成签到,获得积分10
2秒前
2秒前
喵喵喵完成签到,获得积分20
2秒前
独摇之完成签到,获得积分10
2秒前
怡然雁凡完成签到,获得积分10
2秒前
顾jiu完成签到,获得积分10
3秒前
科研通AI5应助热依汗古丽采纳,获得10
3秒前
优秀剑愁完成签到 ,获得积分10
3秒前
敏感网络发布了新的文献求助50
4秒前
院士人启动完成签到,获得积分10
4秒前
5秒前
黄花菜完成签到 ,获得积分0
7秒前
7秒前
顾jiu发布了新的文献求助30
7秒前
Yimim完成签到,获得积分10
7秒前
8秒前
白菜完成签到,获得积分10
8秒前
9秒前
虚心山灵完成签到 ,获得积分20
9秒前
10秒前
白菜发布了新的文献求助30
11秒前
11秒前
xx发布了新的文献求助10
12秒前
Vii应助追寻的白安采纳,获得10
12秒前
科研通AI5应助Laus采纳,获得10
12秒前
小周发布了新的文献求助10
12秒前
万能图书馆应助自信鞯采纳,获得10
12秒前
SherlockLiu发布了新的文献求助30
13秒前
姚博士快毕业完成签到,获得积分10
14秒前
无语大王完成签到,获得积分10
14秒前
怡然的莫茗完成签到,获得积分10
15秒前
清秀的以云完成签到,获得积分20
16秒前
猫好好完成签到,获得积分10
17秒前
18秒前
hhzz完成签到,获得积分10
18秒前
18秒前
xhemers完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808