亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Network Regularization for Phasebased Magnetic Resonance Electrical Properties Tomography with Stein's Unbiased Risk Estimator

磁共振成像 估计员 断层摄影术 网络断层扫描 正规化(语言学) 数学 计算机科学 物理 人工智能 统计 医学 放射科 光学 推论
作者
Chuanjiang Cui,Kyu‐Jin Jung,Mohammed A. Al‐masni,Jun‐Hyeong Kim,Soo‐Yeon Kim,Mina Park,Shao Ying Huang,Se Young Chun,Donghyun Kim
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:3
标识
DOI:10.1109/tbme.2024.3438270
摘要

Magnetic resonance imaging (MRI) can extract the tissue conductivity values from in vivo data using the so-called phase-based magnetic resonance electrical properties tomography (MR-EPT). However, this procedure suffers from noise amplification caused by the use of the Laplacian operator. To counter this issue, we propose a novel preprocessing denoiser for magnetic resonance transceive phase images, operating in an unsupervised manner. Inspired by the deep image prior approach, we apply the random initialization of a convolutional neural network, which enforces an implicit regularization. Additionally, we introduce Stein's unbiased risk estimator, which is the unbiased estimator of the mean square error for optimizing the network without the need for label images. This modification not only tackles the overfitting problem inherent in the deep image prior approach but also operates within a purely unsupervised framework. In addition, instead of using phase images, we use real and imaginary images, which aligns with the theoretical model of the risk estimator. Our generative model needs neither the preparation of training datasets nor prior training procedure, and it maintains adaptability across various resolutions and signal-to-noise ratio levels. In testing. our method significantly diminished residual error remaining in phase maps, quantitatively as well as qualitatively, for both phantom and simulated brain data. Furthermore, it outperformed other denoising methods in reducing noise amplification and boundary error. When applied to healthy volunteer and patient data, the proposed method revealed reduced error in the reconstructed conductivity maps, with conductivity values aligning well with established literature values. To the best of our knowledge, this is the first blind approach using a purely unsupervised denoising framework that can implement a 2D phase-based MR-EPT reconstruction algorithm. The source code is available at https://github.com/Yonsei-MILab/Implicit-Regularization-forMREPT-with-SURE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meimei完成签到 ,获得积分10
1秒前
无心的采萱完成签到,获得积分10
2秒前
jade完成签到,获得积分10
3秒前
陆上飞完成签到,获得积分10
3秒前
欣欣每天开开心心完成签到 ,获得积分10
4秒前
4秒前
俭朴的乐巧完成签到 ,获得积分10
11秒前
兼听则明完成签到,获得积分10
12秒前
12秒前
非典型骨质疏松完成签到,获得积分10
18秒前
阔达冰兰发布了新的文献求助10
18秒前
21秒前
两棵树完成签到,获得积分10
24秒前
xiaoleihu完成签到 ,获得积分10
34秒前
36秒前
眼镜胖子完成签到,获得积分10
37秒前
粽子完成签到,获得积分10
37秒前
37秒前
42秒前
健壮慕梅发布了新的文献求助10
42秒前
Abdurrahman完成签到,获得积分10
49秒前
杜李欧婶儿完成签到 ,获得积分10
49秒前
sss完成签到 ,获得积分10
53秒前
59秒前
xmy完成签到 ,获得积分10
1分钟前
江月年发布了新的文献求助10
1分钟前
meow完成签到 ,获得积分10
1分钟前
小袁完成签到 ,获得积分10
1分钟前
小程同学完成签到 ,获得积分10
1分钟前
boyue完成签到,获得积分10
1分钟前
优雅苑睐完成签到,获得积分10
1分钟前
1分钟前
jeremyher完成签到,获得积分10
1分钟前
请和我吃饭完成签到,获得积分10
1分钟前
含蓄问安发布了新的文献求助30
1分钟前
FFFFF完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176