Proton Hydrogel-Based Supercapacitors with Rapid Low-Temperature Self-Healing Properties

材料科学 超级电容器 电解质 自愈 自愈水凝胶 聚合物 储能 复合材料 电导率 纳米技术 化学工程 高分子化学 电容 电极 物理化学 替代医学 病理 量子力学 工程类 物理 化学 医学 功率(物理)
作者
Qin Zhang,Hui Wang,Shuang Chen,Xuming Liu,Jinhua Liu,Xin Liu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (31): 40980-40991 被引量:2
标识
DOI:10.1021/acsami.4c07421
摘要

Hydrogel-based supercapacitors are an up-and-coming candidate for safe and portable energy storage. However, it is challenging for hydrogel electrolytes to achieve high conductivity and rapid self-healing at subzero temperatures because the movements of polymer chains and the reconstruction capability of broken dynamic bonds are limited. Herein, a highly conductive proton polyacrylamide-phytic acid (PAAm-PA) hydrogel electrolyte with rapid and autonomous self-healing ability and excellent adhesion over a wide temperature range is developed. PA, as a proton donor center, endows the hydrogels with high conductivity (102.0 mS cm–1) based on the Grotthuss mechanism. PA can also prevent the crystallization of water and form multiple reversible hydrogen bonds in the polymer network, which solves the dysfunction of self-healing hydrogels in a cryogenic environment. Accordingly, the hydrogel electrolytes demonstrate fast low-temperature self-healing ability with a self-healing efficiency of 79.4% within 3 h at −20 °C. In addition, the hydrogel electrolytes present outstanding adhesiveness on electrodes due to the generation of hydrogen bonds between PA and activated carbon electrodes. As a result, the integrated hydrogel-based supercapacitors with tight bonding electrode/electrolyte interface deliver a 139.5 mF cm–2 specific capacitance at 25 °C. Moreover, the supercapacitors display superb self-healing ability, achieving 92.1% of capacitance recovery after three cutting–healing cycles at −20 °C. Furthermore, the supercapacitors demonstrate only 6.4% capacitance degradation after 5000 charging–discharging cycles at −20 °C. This work provides a roadmap for designing all-in-one flexible energy storage devices with excellent self-healing ability over a wide temperature range.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
八岁发布了新的文献求助10
2秒前
2秒前
4秒前
PP发布了新的文献求助10
4秒前
ku完成签到,获得积分10
4秒前
搜集达人应助kkkkkkkkkai采纳,获得10
5秒前
ky发布了新的文献求助10
5秒前
5秒前
5秒前
脑洞疼应助fhl采纳,获得10
5秒前
小马甲应助不敢装睡采纳,获得10
6秒前
礞石应助超级水壶采纳,获得10
6秒前
Pyotr完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
NexusExplorer应助wangbq采纳,获得200
9秒前
10秒前
10秒前
搜集达人应助八岁采纳,获得10
10秒前
立华奏发布了新的文献求助10
10秒前
CipherSage应助纵使千千晚星采纳,获得10
11秒前
Hum0ro98发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
现代梦琪发布了新的文献求助10
12秒前
材料生发布了新的文献求助10
12秒前
fantaist完成签到 ,获得积分10
13秒前
ky完成签到,获得积分10
13秒前
疯狂小卷毛应助戴衡霞采纳,获得10
14秒前
zzq完成签到,获得积分10
14秒前
调研昵称发布了新的文献求助10
14秒前
Yqx发布了新的文献求助10
15秒前
18秒前
18秒前
lily发布了新的文献求助30
18秒前
20秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470685
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9084950
捐赠科研通 2754196
什么是DOI,文献DOI怎么找? 1511311
邀请新用户注册赠送积分活动 698363
科研通“疑难数据库(出版商)”最低求助积分说明 698253