量子点
原位
材料科学
纳米技术
太阳能电池
化学工程
化学
光电子学
有机化学
工程类
作者
Tianming Wang,Lejuan Cai,Caijuan Xia,Song Han,Lianbi Li,Gongxun Bai,Nianqing Fu,Lede Xian,Rong Yang,Haoran Mu,Guangyu Zhang,Shenghuang Lin
标识
DOI:10.1002/advs.202406476
摘要
Abstract Quantum dot sensitized solar cells (QDSCs) represent a promising third‐generation photovoltaic technology, boasting a high theoretical efficiency of 44% and cost efficiency. However, their practical efficiency is constrained by reduced photovoltage ( V oc ) and fill factor (FF). One primary reason is the inefficient charge transfer and elevated recombination rates at the counter electrode (CE). In this work, a novel CE composed of a titanium mesh loaded with Co,N─C@MoS 2 is introduced for the assembly of QDSCs. The incorporation of nanosized MoS 2 enhances the density of catalytic sites, while the Co,N─C component ensures high conductivity and provides a substantial active surface area. Additionally, the titanium mesh's 3D structure serves as an effective electrical conduit, facilitating rapid electron transfer from the external circuit to the composite. These improvements in catalytic activity, charge transfer rate, and stability of the CE significantly enhance the photovoltaic performance of QDSCs. The optimized cells achieve a groundbreaking power conversion efficiency (PCE) of 16.39%, accompanied by a short‐circuit current density ( J sc ) of 27.26 mA cm −2 , V oc of 0.818 V, and FF of 0.735. These results not only offer a new strategy for designing electrodes with high catalytic activity but also underscore the promising application of the Co,N─C@MoS 2 composite in enhancing QDSC technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI