OrgaNet: A Deep Learning Approach for Automated Evaluation of Organoids Viability in Drug Screening

活力测定 计算机科学 类有机物 稳健性(进化) 药物发现 高含量筛选 人工智能 计算生物学 机器学习 生物信息学 细胞 生物 细胞生物学 生物化学 基因
作者
Xuesheng Bian,Gang Li,Cheng Wang,Siqi Shen,Weiquan Liu,Xiuhong Lin,Zexin Chen,Mancheung Cheung,Xióngbiāo Luó
出处
期刊:Lecture Notes in Computer Science 卷期号:: 411-423 被引量:2
标识
DOI:10.1007/978-3-030-91415-8_35
摘要

Organoid, a 3D in vitro cell culture, has high similarities with derived tissues or organs in vivo, which makes it widely used in personalized drug screening. Although organoids play an essential role in drug screening, the existing methods are difficult to accurately evaluate the viability of organoids, making the existing methods still have many limitations in robustness and accuracy. Determination of Adenosine triphosphate (ATP) is a mature way to analyze cell viability, which is commonly used in drug screening. However, ATP bioluminescence technique has an inherent flaw. All living cells will be lysed during ATP determination. Therefore, ATP bioluminescence technique is an end-point method, which only assess cell viability in the current state and unable to evaluate the change trend of cell viability before or after medication. In this paper, we propose a deep learning based framework, OrgaNet, for organoids viability evaluation based on organoid images. It is a straightforward and repeatable solution to evaluate organoid viability, promoting the reliability of drug screening. The OrgaNet consists of three parts: a feature extractor, extracts the representation of organoids; a multi-head classifier, improves feature robustness through supervised learning; a scoring function, measures organoids viability through contrastive learning. Specifically, to optimize our proposed OrgaNet, we constructed the first dedicated dataset, which is annotated by seven experienced experts. Experiments demonstrate that the OrgaNet shows great potential in organoid viability evaluation. The OrgaNet provides another solution to evaluate organoids viability and shows a high correlation compared with ATP bioluminescence technique. Availability: https://github.com/541435721/OrgaNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小明完成签到,获得积分10
刚刚
科研包完成签到,获得积分10
1秒前
tangzanwayne发布了新的文献求助10
1秒前
复杂的凡梦完成签到,获得积分10
2秒前
dzjin完成签到,获得积分10
4秒前
温婉完成签到,获得积分10
5秒前
孤独的迎滑完成签到,获得积分10
5秒前
三木完成签到 ,获得积分10
6秒前
Bella完成签到,获得积分10
7秒前
523完成签到,获得积分10
7秒前
小道奇完成签到 ,获得积分10
8秒前
蔬菜土豆发布了新的文献求助10
8秒前
任笑白完成签到 ,获得积分10
9秒前
Livvia完成签到,获得积分10
9秒前
Pwrry完成签到,获得积分10
10秒前
亮仔完成签到,获得积分10
11秒前
斯文的天奇完成签到 ,获得积分10
11秒前
安详的韩庆完成签到,获得积分10
11秒前
harric完成签到,获得积分10
12秒前
123456完成签到,获得积分20
12秒前
澈千子完成签到,获得积分10
12秒前
曾建完成签到 ,获得积分10
12秒前
chen完成签到 ,获得积分10
13秒前
喜东东完成签到,获得积分10
13秒前
孤独梦曼完成签到,获得积分10
13秒前
Jasper应助慕容松采纳,获得10
14秒前
亮仔发布了新的文献求助10
15秒前
15秒前
HAL9000完成签到,获得积分10
15秒前
昵称完成签到,获得积分10
16秒前
和平发展完成签到,获得积分10
16秒前
本草石之寒温完成签到 ,获得积分10
16秒前
Lucas应助可乐采纳,获得10
17秒前
18秒前
吕布完成签到,获得积分10
18秒前
18秒前
18秒前
Owen应助yy采纳,获得10
19秒前
licheng完成签到,获得积分10
19秒前
灰太狼大王完成签到 ,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855