OrgaNet: A Deep Learning Approach for Automated Evaluation of Organoids Viability in Drug Screening

活力测定 计算机科学 类有机物 稳健性(进化) 药物发现 高含量筛选 人工智能 计算生物学 机器学习 生物信息学 细胞 生物 细胞生物学 生物化学 基因
作者
Xuesheng Bian,Gang Li,Cheng Wang,Siqi Shen,Weiquan Liu,Xiuhong Lin,Zexin Chen,Mancheung Cheung,Xióngbiāo Luó
出处
期刊:Lecture Notes in Computer Science 卷期号:: 411-423 被引量:2
标识
DOI:10.1007/978-3-030-91415-8_35
摘要

Organoid, a 3D in vitro cell culture, has high similarities with derived tissues or organs in vivo, which makes it widely used in personalized drug screening. Although organoids play an essential role in drug screening, the existing methods are difficult to accurately evaluate the viability of organoids, making the existing methods still have many limitations in robustness and accuracy. Determination of Adenosine triphosphate (ATP) is a mature way to analyze cell viability, which is commonly used in drug screening. However, ATP bioluminescence technique has an inherent flaw. All living cells will be lysed during ATP determination. Therefore, ATP bioluminescence technique is an end-point method, which only assess cell viability in the current state and unable to evaluate the change trend of cell viability before or after medication. In this paper, we propose a deep learning based framework, OrgaNet, for organoids viability evaluation based on organoid images. It is a straightforward and repeatable solution to evaluate organoid viability, promoting the reliability of drug screening. The OrgaNet consists of three parts: a feature extractor, extracts the representation of organoids; a multi-head classifier, improves feature robustness through supervised learning; a scoring function, measures organoids viability through contrastive learning. Specifically, to optimize our proposed OrgaNet, we constructed the first dedicated dataset, which is annotated by seven experienced experts. Experiments demonstrate that the OrgaNet shows great potential in organoid viability evaluation. The OrgaNet provides another solution to evaluate organoids viability and shows a high correlation compared with ATP bioluminescence technique. Availability: https://github.com/541435721/OrgaNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古月完成签到,获得积分10
1秒前
很多熏熏发布了新的文献求助10
3秒前
keroro发布了新的文献求助10
3秒前
小熵发布了新的文献求助10
3秒前
YilinHou完成签到,获得积分10
3秒前
科研通AI2S应助小雨采纳,获得10
4秒前
5秒前
xiajj发布了新的文献求助10
9秒前
CodeCraft应助廾匸采纳,获得10
10秒前
科研通AI5应助称心寒松采纳,获得10
10秒前
10秒前
keroro完成签到,获得积分10
10秒前
马倩茹发布了新的文献求助10
11秒前
11秒前
14秒前
WYF完成签到,获得积分20
15秒前
joruruo发布了新的文献求助30
15秒前
很多熏熏完成签到,获得积分10
16秒前
16秒前
李健应助难过以晴采纳,获得30
17秒前
加百莉发布了新的文献求助10
18秒前
WFLLL发布了新的文献求助10
18秒前
雪流星发布了新的文献求助10
19秒前
20秒前
无花果应助落寞电灯胆采纳,获得10
20秒前
Akim应助勤奋千风采纳,获得10
21秒前
22秒前
谜记完成签到,获得积分10
22秒前
22秒前
彼岸完成签到,获得积分10
23秒前
23秒前
seven完成签到,获得积分10
24秒前
CR发布了新的文献求助10
24秒前
shangyu66发布了新的文献求助10
25秒前
墨辰发布了新的文献求助10
25秒前
科研通AI5应助王sir采纳,获得10
25秒前
一路美好完成签到,获得积分10
27秒前
小胖完成签到 ,获得积分10
27秒前
28秒前
南风完成签到,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427