OrgaNet: A Deep Learning Approach for Automated Evaluation of Organoids Viability in Drug Screening

活力测定 计算机科学 类有机物 稳健性(进化) 药物发现 高含量筛选 人工智能 计算生物学 机器学习 生物信息学 细胞 生物 细胞生物学 生物化学 基因
作者
Xuesheng Bian,Gang Li,Cheng Wang,Siqi Shen,Weiquan Liu,Xiuhong Lin,Zexin Chen,Mancheung Cheung,Xióngbiāo Luó
出处
期刊:Lecture Notes in Computer Science 卷期号:: 411-423 被引量:2
标识
DOI:10.1007/978-3-030-91415-8_35
摘要

Organoid, a 3D in vitro cell culture, has high similarities with derived tissues or organs in vivo, which makes it widely used in personalized drug screening. Although organoids play an essential role in drug screening, the existing methods are difficult to accurately evaluate the viability of organoids, making the existing methods still have many limitations in robustness and accuracy. Determination of Adenosine triphosphate (ATP) is a mature way to analyze cell viability, which is commonly used in drug screening. However, ATP bioluminescence technique has an inherent flaw. All living cells will be lysed during ATP determination. Therefore, ATP bioluminescence technique is an end-point method, which only assess cell viability in the current state and unable to evaluate the change trend of cell viability before or after medication. In this paper, we propose a deep learning based framework, OrgaNet, for organoids viability evaluation based on organoid images. It is a straightforward and repeatable solution to evaluate organoid viability, promoting the reliability of drug screening. The OrgaNet consists of three parts: a feature extractor, extracts the representation of organoids; a multi-head classifier, improves feature robustness through supervised learning; a scoring function, measures organoids viability through contrastive learning. Specifically, to optimize our proposed OrgaNet, we constructed the first dedicated dataset, which is annotated by seven experienced experts. Experiments demonstrate that the OrgaNet shows great potential in organoid viability evaluation. The OrgaNet provides another solution to evaluate organoids viability and shows a high correlation compared with ATP bioluminescence technique. Availability: https://github.com/541435721/OrgaNet
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪妮完成签到 ,获得积分10
1秒前
Elena发布了新的文献求助10
2秒前
2秒前
LCX完成签到,获得积分10
3秒前
5秒前
学习完成签到,获得积分10
6秒前
积极晓绿完成签到,获得积分10
6秒前
啊啊啊lei发布了新的文献求助10
7秒前
Ch185完成签到,获得积分10
8秒前
智慧少女不头秃完成签到,获得积分10
8秒前
TAOYANG_发布了新的文献求助10
10秒前
兜兜发布了新的文献求助10
10秒前
平淡尔琴完成签到,获得积分10
10秒前
For完成签到,获得积分10
11秒前
可以听见吗完成签到 ,获得积分10
12秒前
再睡一夏完成签到,获得积分10
12秒前
体贴的小天鹅完成签到,获得积分10
13秒前
亮山火马完成签到,获得积分10
13秒前
Isaacwg168完成签到,获得积分10
14秒前
锵锵锵完成签到 ,获得积分10
15秒前
游天发布了新的文献求助20
16秒前
19秒前
19秒前
奋斗醉冬完成签到,获得积分10
19秒前
19秒前
TAOYANG_完成签到,获得积分20
20秒前
Ryan完成签到,获得积分10
20秒前
浮三白完成签到,获得积分10
20秒前
爱吃萝卜的Bob完成签到,获得积分10
20秒前
Andy完成签到,获得积分20
20秒前
dd完成签到,获得积分10
21秒前
wumin发布了新的文献求助10
22秒前
fengpu完成签到,获得积分10
23秒前
23秒前
24秒前
星星完成签到,获得积分10
25秒前
共享精神应助TAOYANG_采纳,获得10
25秒前
兜兜完成签到,获得积分10
26秒前
欣喜的薯片完成签到 ,获得积分10
26秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
探索化学的奥秘:电子结构方法 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788210
关于积分的说明 7784949
捐赠科研通 2444164
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625576
版权声明 601011