生物传感器
适体
核酸外切酶
化学
纳米载体
核酸外切酶 III
组合化学
小分子
生物物理学
DNA
竞争性约束
纳米技术
生物化学
聚合酶
材料科学
生物
药物输送
分子生物学
受体
有机化学
大肠杆菌
基因
作者
Yingwen Wang,Dun Zhang,Yan Zeng,Peng Qi
标识
DOI:10.1016/j.bios.2021.113817
摘要
Simultaneous multiple-target detection is essential for the prevention, identification, and treatment of numerous diseases. In this study, a novel strategy based on target-modulated competitive binding and exonuclease I (Exo I)-powered signal molecule release was established with the advantages of rapid response and high selectivity and sensitivity. The strategy holds substantial potential for the development of versatile platforms for the simultaneous detection of biological targets. To mitigate the low load capacity and time-consuming responsive process of the Zr-MOF system, UiO-67 was chosen to replace UiO-66 (a typical Zr-MOF) as the nanocarrier for encapsulating more signal molecules, whereby the assembled double-stranded DNA (dsDNA) structures of UiO-67 acted as gatekeepers to form dsDNA-functionalized MOFs. Additionally, Exo I was introduced into the system to accelerate the release of the signal molecules. In the presence of biological targets, the competitive binding between the targets and aptamers caused the hydrolysis of the free DNA sequence by Exo I, promoting the release of signal molecules and leading to a rapid and significant increase in the fluorescence intensity. For adenosine triphosphate (ATP) and cytochrome c (cyt c), which were chosen as model biological targets, this sensor displayed detection limits as low as 5.03 and 6.11 fM, respectively. Moreover, the developed biosensor was successfully applied to the simultaneous detection of ATP and cyt c in spiked serum samples. Therefore, this strategy provides guidance for further research of biosensors for simultaneous multiple-target detection and propels the application of MOF carriers in biomedicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI