Assessment of perinodular stiffness in differentiating malignant from benign thyroid nodules

医学 甲状腺结节 核医学 弹性成像 超声波 结核(地质) 细针穿刺 甲状腺 危险分层 超声科 放射科 内科学 活检 古生物学 生物
作者
Lei Hu,Xiao Liu,Chong Pei,Li Xie,Nianan He
出处
期刊:Endocrine connections [Bioscientifica]
卷期号:10 (5): 492-501 被引量:13
标识
DOI:10.1530/ec-21-0034
摘要

We evaluated the diagnostic accuracy of perinodular stiffness, four risk stratification systems (RSSs) (KWAK-TIRADS, ACR-TIRADS, EU-TIRADS, and C-TIRADS), and the combination of perinodular stiffness and the four RSSs in differentiating malignant from benign thyroid nodules (TNs).A total of 788 TNs in 726 patients were examined with conventional ultrasound (US) examination and sound touch elastography (STE). All TNs were classified by each of the four RSSs. The stiffness inside (E) the TNs was measured by STE. The stiffness of the 2.0-mm perinodular region (Eshell) was measured with the Shell measurement function of STE. The diagnostic performances of four RSSs, the E values, and the Eshell values were evaluated. All TNs were further divided into subgroups based on size (≤ 10 mm group and > 10 mm group).Ninety-six TNs were classified as benign and 692 as malignant. Among the single-method approaches, ACR-TIRADS showed the highest AUC (0.77) for differentiating malignant from benign TNs for all TNs included. Eshell showed the highest AUC (0.75) in differentiating malignant from benign TNs for TNs with sizes ≤ 10 mm, and there were no significant differences in AUC among all single methods for diagnosis of TNs with sizes > 10 mm (P > 0.05). The combination of C-TIRADS and Eshell/E yielded the highest AUC for all TNs (0.83) and for TNs with size ≤ 10 mm (0.85) compared with other combinations.Eshell/E combined with conventional US improves the diagnostic accuracy in TNs and may reduce unnecessary fine-needle aspiration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿七完成签到,获得积分10
1秒前
Leo000007发布了新的文献求助10
1秒前
喜悦音响完成签到,获得积分10
1秒前
韩梅完成签到,获得积分20
1秒前
mzm完成签到,获得积分10
1秒前
Trost发布了新的文献求助10
1秒前
Ava应助聪明胡图图采纳,获得10
1秒前
Akim应助Ll采纳,获得10
1秒前
2秒前
猫猫头发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
binghe411完成签到,获得积分10
3秒前
4秒前
阔达的扬完成签到,获得积分10
4秒前
4秒前
gtxy完成签到 ,获得积分10
4秒前
4秒前
尕翠完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI6应助ccc采纳,获得10
4秒前
88发布了新的文献求助10
5秒前
顾矜应助快乐的白桃采纳,获得10
5秒前
6秒前
6秒前
我是老大应助Daisy采纳,获得10
6秒前
huminjie完成签到,获得积分10
6秒前
稳健的柯南完成签到,获得积分10
6秒前
小鹅发布了新的文献求助10
6秒前
CipherSage应助学术小白采纳,获得10
6秒前
6秒前
6秒前
林林林发布了新的文献求助20
7秒前
wuyuzegang应助dzx1采纳,获得20
7秒前
推土机爱学习完成签到 ,获得积分10
7秒前
Feng发布了新的文献求助10
7秒前
脑洞疼应助文右三采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612759
求助须知:如何正确求助?哪些是违规求助? 4697823
关于积分的说明 14895857
捐赠科研通 4734427
什么是DOI,文献DOI怎么找? 2546674
邀请新用户注册赠送积分活动 1510710
关于科研通互助平台的介绍 1473494