MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy

医学 无线电技术 新辅助治疗 接收机工作特性 放射科 核医学 磁共振成像 乳腺癌 内科学 癌症
作者
Jan C. Peeken,Rebecca Asadpour,Katja Specht,Eleanor Y. Chen,Olena Klymenko,Victor Akinkuoroye,Daniel S. Hippe,Matthew B. Spraker,Stephanie K. Schaub,Hendrik Dapper,Carolin Knebel,Nina A. Mayr,Alexandra S. Gersing,Henry C. Woodruff,Philippe Lambin,Matthew J. Nyflot,Stephanie E. Combs
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:164: 73-82 被引量:50
标识
DOI:10.1016/j.radonc.2021.08.023
摘要

In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment ("delta-radiomics") may be able to predict the pathological complete response (pCR).MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as <5% viable cells. After segmentation and preprocessing, 105 radiomic features were extracted. Delta-radiomic features were calculated by subtraction of features derived from MRI scans obtained before and after neoadjuvant therapy. After feature reduction, machine learning modeling was performed in 100 iterations of 3-fold nested cross-validation. Delta-radiomic models were compared with single timepoint models in the testing cohort.The combined delta-radiomic models achieved the best area under the receiver operating characteristic curve (AUC) of 0.75. Pre-therapeutic tumor volume was the best conventional predictor (AUC 0.70). The T2FS-based delta-radiomic model had the most balanced classification performance with a balanced accuracy of 0.69. Delta-radiomic models achieved better reproducibility than single timepoint radiomic models, RECIST or the peri-therapeutic volume change. Delta-radiomic models were significantly associated with survival in multivariate Cox regression.This exploratory analysis demonstrated that MRI-based delta-radiomics improves prediction of pCR over tumor volume and RECIST. Delta-radiomics may one day function as a biomarker for personalized treatment adaptations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Emper发布了新的文献求助10
1秒前
2秒前
赵康康完成签到,获得积分10
2秒前
2秒前
2秒前
Peng完成签到,获得积分10
2秒前
徐德宏完成签到 ,获得积分10
4秒前
5秒前
小蘑菇应助谦让黎云采纳,获得10
5秒前
5秒前
111发布了新的文献求助10
5秒前
盐好香发布了新的文献求助10
6秒前
6秒前
6秒前
赵康康发布了新的文献求助10
7秒前
DDZZGG发布了新的文献求助10
7秒前
8秒前
滑腻腻的小鱼完成签到 ,获得积分20
8秒前
詹军完成签到,获得积分10
8秒前
酷炫小伙发布了新的文献求助10
9秒前
9秒前
lj完成签到 ,获得积分20
11秒前
开朗又菱发布了新的文献求助10
11秒前
NexusExplorer应助靓丽的乌龟采纳,获得10
11秒前
可靠凤发布了新的文献求助10
12秒前
13秒前
天意如此完成签到,获得积分10
13秒前
小马甲应助抹茶肥肠采纳,获得10
13秒前
无私的含海完成签到,获得积分10
15秒前
共享精神应助酷炫小伙采纳,获得10
17秒前
17秒前
毛豆爸爸应助呆瓜采纳,获得10
17秒前
18秒前
orixero应助龙眼采纳,获得10
18秒前
Kaysarr发布了新的文献求助10
18秒前
19秒前
19秒前
上官若男应助DDZZGG采纳,获得10
19秒前
21秒前
23秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129513
求助须知:如何正确求助?哪些是违规求助? 2780318
关于积分的说明 7747496
捐赠科研通 2435637
什么是DOI,文献DOI怎么找? 1294181
科研通“疑难数据库(出版商)”最低求助积分说明 623590
版权声明 600570