EnTSSR: A Weighted Ensemble Learning Method to Impute Single-Cell RNA Sequencing Data

辍学(神经网络) 推论 杠杆(统计) 聚类分析 计算机科学 人工智能 缺少数据 集成学习 机器学习 数据挖掘 插补(统计学)
作者
Fan Lü,Yilong Lin,Chongbin Yuan,Xiao-Fei Zhang,Le Ou-Yang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (6): 2781-2787 被引量:5
标识
DOI:10.1109/tcbb.2021.3110850
摘要

The advancements of single-cell RNA sequencing (scRNA-seq) technologies have provided us unprecedented opportunities to characterize cellular states and investigate the mechanisms of complex diseases. Due to technical issues such as dropout events, scRNA-seq data contains excess of false zero counts, which has a substantial impact on the downstream analyses. Although several computational approaches have been proposed to impute dropout events in scRNA-seq data, there is no strong consensus on which is the best approach. In this study, we propose a novel weighted ensemble learning method, named EnTSSR, to impute dropout events in scRNA-seq data. By using a multi-view two-side sparse self-representation framework, our model can exploit the consensus similarities between genes and between cells based on the imputed results of various imputation methods. Moreover, we introduce a weighted ensemble strategy to leverage the information captured by various imputation methods effectively. Down-sampling experiments, clustering analysis, differential expression analysis and cell trajectory inference are carried out to evaluate the performance of our proposed model. Experiment results demonstrate that our EnTSSR can effectively recover the true expression pattern of scRNA-seq data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一页书完成签到,获得积分10
1秒前
清脆靳完成签到,获得积分10
3秒前
3秒前
3秒前
John发布了新的文献求助10
4秒前
FashionBoy应助雪飞杨采纳,获得10
5秒前
6秒前
6秒前
南宫清涟应助大力元霜采纳,获得10
6秒前
Jason应助drift采纳,获得10
7秒前
8秒前
充电宝应助柠檬采纳,获得10
8秒前
我是老大应助长孙随阴采纳,获得10
9秒前
zd发布了新的文献求助10
9秒前
11秒前
会飞的猪崽子完成签到 ,获得积分10
11秒前
oydent完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
zz发布了新的文献求助10
15秒前
发疯的游子完成签到 ,获得积分10
15秒前
毛豆应助雨碎寒江采纳,获得10
16秒前
崔广超发布了新的文献求助10
17秒前
12发布了新的文献求助10
18秒前
宁祚完成签到,获得积分10
19秒前
20秒前
希望天下0贩的0应助zd采纳,获得10
20秒前
20秒前
22秒前
wpzzpw发布了新的文献求助10
22秒前
万能图书馆应助夏时安采纳,获得10
22秒前
23秒前
Ekko完成签到,获得积分10
23秒前
西红柿发布了新的文献求助10
24秒前
桂圆妈妈发布了新的文献求助10
24秒前
111111发布了新的文献求助10
26秒前
duming发布了新的文献求助10
27秒前
28秒前
lan发布了新的文献求助10
28秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422167
求助须知:如何正确求助?哪些是违规求助? 3022590
关于积分的说明 8901481
捐赠科研通 2709974
什么是DOI,文献DOI怎么找? 1486247
科研通“疑难数据库(出版商)”最低求助积分说明 686963
邀请新用户注册赠送积分活动 682186