GL-GCN: Global and Local Dependency Guided Graph Convolutional Networks for aspect-based sentiment classification

计算机科学 依赖关系(UML) 情绪分析 判决 人工智能 依赖关系图 图形 利用 水准点(测量) 地点 依存语法 自然语言处理 理论计算机科学 哲学 语言学 地理 计算机安全 大地测量学
作者
Xiaofei Zhu,Liling Zhu,Jiafeng Guo,Shangsong Liang,Stefan Dietze
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115712-115712 被引量:42
标识
DOI:10.1016/j.eswa.2021.115712
摘要

Aspect-based sentiment classification, which aims at identifying the sentiment polarity of a sentence towards the specified aspect, has become a crucial task for sentiment analysis. Existing methods have proposed effective models and achieved satisfactory results, but they mainly focus on exploiting local structure information of a given sentence, such as locality, sequentiality or syntactical dependency constraints within the sentence. Recently, some research works, which utilizes global dependency information, has attracted increasing interest and significantly boosts the performance of text classification. In this paper, we simultaneously introduce both global structure information and local structure information into the task of aspect-based sentiment classification, and propose a novel aspect-based sentiment classification approach, i.e., Global and Local Dependency Guided Graph Convolutional Networks (GL-GCN). In particular, we exploit the syntactic dependency structure as well as sentence sequential information (e.g., the output of BiLSTM) to mine the local structure information of a sentence. On the other hand, we construct a word-document graph using the entire corpus to reveal the global dependency information between words. In addition, an attention mechanism is leveraged to effectively fuse both global and local dependency structure signals. Extensive experiments are conducted on five benchmark datasets in terms of both Accuracy and F1-Score, and the results illustrate that our proposed framework outperforms state-of-the-art methods for aspect-based sentiment classification. The model is implemented using PyTorch and is trained on GPU GeForce GTX 2080 Ti.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XIEQ发布了新的文献求助10
1秒前
1秒前
科研通AI6应助yyanxuemin919采纳,获得10
3秒前
3秒前
5秒前
7秒前
一头猪发布了新的文献求助10
8秒前
Bazinga完成签到,获得积分10
8秒前
嗯嗯嗯完成签到,获得积分10
9秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
9秒前
10秒前
嘿嘿发布了新的文献求助10
10秒前
able完成签到 ,获得积分10
11秒前
12秒前
嗯嗯嗯发布了新的文献求助10
13秒前
丘比特应助度ewf采纳,获得10
14秒前
丽丽丽发布了新的文献求助10
14秒前
yyanxuemin919发布了新的文献求助10
14秒前
蘑菇完成签到 ,获得积分10
17秒前
jam发布了新的文献求助10
17秒前
18秒前
烟花应助ccc采纳,获得10
19秒前
拉长的诗蕊完成签到,获得积分10
19秒前
20秒前
大妙妙完成签到 ,获得积分10
23秒前
23秒前
里里完成签到 ,获得积分10
24秒前
韩妙发布了新的文献求助10
25秒前
科研通AI6应助丽丽丽采纳,获得10
26秒前
太渊完成签到 ,获得积分10
26秒前
ccc发布了新的文献求助10
28秒前
爆米花应助chen采纳,获得10
31秒前
赘婿应助fahbfafajk采纳,获得10
33秒前
33秒前
李健应助韩妙采纳,获得10
34秒前
35秒前
37秒前
sun发布了新的文献求助10
38秒前
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432