内孢子
枯草芽孢杆菌
孢子
发芽
细菌
微生物学
生物
材料科学
废物管理
食品科学
植物
工程类
遗传学
作者
Jihyun Ryu,Seokheun Choi
标识
DOI:10.1016/j.bios.2021.113293
摘要
A microbial fuel cell is created that uses a bacterium's natural ability to revive from dormancy to provide on-demand power for next-generation wearable applications. In adverse conditions, Bacillus subtilis responds by becoming endospores that serve as a dormant biocatalyst embedded in a skin-mountable paper-based microbial fuel cell. When activated by nutrient-rich human sweat, the germinating bacteria produce enough electricity to operate small devices, such as the calculator that we operated to test our methodology. The spore germination is artificially accelerated by nutritious germinants, which are pre-loaded on the skin-contacting bottom layer of the device, absorb the released sweat, and deliver a mixture of the dissolved germinants and sweat to the spores. When the skin-mountable device is applied to the arm of a sweating volunteer, it can generate a maximum power density of 16.6 μW/cm2 through bacterial respiratory activity. A potential risk of bacteria leakage from the device is minimized by packaging with a small pore size paper so that bacterial spores and germinated cells cannot pass through. When three serially connected devices are integrated into a single on-chip platform and energized by sweat, a significantly enhanced power density of 56.6 μW/cm2 is generated, powering an electrical calculator. After three weeks of dormant storage, the device exhibits no significant decrease in electrical output when activated by sweat. After use, the device is easily incinerated without risking bacterial infection. This work demonstrates the promising potential of the spore-forming microbial fuel cell as a disposable and long storage life power source for next-generation wearable applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI