A novel robust zero-watermarking algorithm for medical images

数字水印 水印 计算机科学 加密 稳健性(进化) 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 图像(数学) 奇异值分解 特征提取 算法 认证(法律)
作者
Kun Hu,Xiaochao Wang,Jianping Hu,Hongfei Wang,Hong Qin
出处
期刊:The Visual Computer [Springer Science+Business Media]
卷期号:37 (9-11): 2841-2853 被引量:1
标识
DOI:10.1007/s00371-021-02168-5
摘要

A novel robust zero-watermarking algorithm for medical images is presented in this paper. The multi-scale decomposition of bi-dimensional empirical mode decomposition (BEMD) has exhibited many attractive properties that enable the proposed algorithm to robustly detect the tampering regions and protect the copyright of medical images simultaneously. Given a medical image, we first decompose a medical image adaptively into a finite number of intrinsic mode functions (IMFs) and a residue, by taking a full advantage of BEMD. The first IMF starts with the finest scale retaining fragile information and is best suitable for tampering detection, while the residue includes robust information at the coarser scale and is applied to the protection of intellectual property rights of medical images. Next, the feature matrices are extracted from the first IMF and the residue via singular value decomposition, which achieves robust performance subject to most attacks. For a given watermark image, it is encrypted by Arnold transform to enhance the security of the watermark. Then, the feature images are constructed by performing the exclusive-or operation between the encrypted watermark image and the extracted feature matrices. Finally, the feature images are securely stored in the copyright authentication database to be further used for copyright authentication and tampering detection. A large number of experimental results and comparisons with existing watermarking algorithms confirm that the newly proposed watermarking algorithm not only has strong ability on tampering detection, but also has better performance in combating various attacks, including cropping, Gaussian noise, median filtering, image enhancement attacks, etc. The newly developed algorithm also shows great promise in processing natural images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宿帅帅完成签到,获得积分10
刚刚
刚刚
Ningxin完成签到,获得积分10
刚刚
HHEHK发布了新的文献求助10
刚刚
柚子完成签到 ,获得积分10
刚刚
雨辰完成签到,获得积分10
2秒前
宿帅帅发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
熠熠完成签到,获得积分10
5秒前
6秒前
zxzb完成签到,获得积分10
8秒前
苹果萧完成签到 ,获得积分10
11秒前
宋江他大表哥完成签到,获得积分10
11秒前
able发布了新的文献求助10
11秒前
王先生完成签到 ,获得积分10
12秒前
H.发布了新的文献求助10
12秒前
luoluo完成签到,获得积分10
13秒前
13秒前
高分子完成签到,获得积分10
13秒前
yian发布了新的文献求助10
14秒前
yar应助体贴凌柏采纳,获得10
15秒前
自由的雪一完成签到,获得积分10
15秒前
Ava应助李振博采纳,获得200
15秒前
JW发布了新的文献求助10
16秒前
无限的千凝完成签到 ,获得积分10
17秒前
CipherSage应助YeeYee采纳,获得10
17秒前
17秒前
Ander完成签到 ,获得积分10
18秒前
化白完成签到,获得积分10
19秒前
H.完成签到,获得积分10
19秒前
chuzihang完成签到 ,获得积分10
19秒前
科研小狗完成签到,获得积分10
25秒前
11完成签到,获得积分10
26秒前
柏林寒冬应助QAQ采纳,获得10
28秒前
Flynn完成签到 ,获得积分10
30秒前
31秒前
31秒前
BZPL完成签到,获得积分10
32秒前
LANER完成签到 ,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029