A novel robust zero-watermarking algorithm for medical images

数字水印 水印 计算机科学 加密 稳健性(进化) 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 图像(数学) 奇异值分解 特征提取 算法 认证(法律)
作者
Kun Hu,Xiaochao Wang,Jianping Hu,Hongfei Wang,Hong Qin
出处
期刊:The Visual Computer [Springer Science+Business Media]
卷期号:37 (9-11): 2841-2853 被引量:1
标识
DOI:10.1007/s00371-021-02168-5
摘要

A novel robust zero-watermarking algorithm for medical images is presented in this paper. The multi-scale decomposition of bi-dimensional empirical mode decomposition (BEMD) has exhibited many attractive properties that enable the proposed algorithm to robustly detect the tampering regions and protect the copyright of medical images simultaneously. Given a medical image, we first decompose a medical image adaptively into a finite number of intrinsic mode functions (IMFs) and a residue, by taking a full advantage of BEMD. The first IMF starts with the finest scale retaining fragile information and is best suitable for tampering detection, while the residue includes robust information at the coarser scale and is applied to the protection of intellectual property rights of medical images. Next, the feature matrices are extracted from the first IMF and the residue via singular value decomposition, which achieves robust performance subject to most attacks. For a given watermark image, it is encrypted by Arnold transform to enhance the security of the watermark. Then, the feature images are constructed by performing the exclusive-or operation between the encrypted watermark image and the extracted feature matrices. Finally, the feature images are securely stored in the copyright authentication database to be further used for copyright authentication and tampering detection. A large number of experimental results and comparisons with existing watermarking algorithms confirm that the newly proposed watermarking algorithm not only has strong ability on tampering detection, but also has better performance in combating various attacks, including cropping, Gaussian noise, median filtering, image enhancement attacks, etc. The newly developed algorithm also shows great promise in processing natural images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cquank完成签到,获得积分10
1秒前
无望幽月完成签到 ,获得积分10
2秒前
www完成签到 ,获得积分10
3秒前
专注鼠标完成签到,获得积分10
4秒前
5秒前
沉静烨伟发布了新的文献求助10
5秒前
Kyone完成签到,获得积分10
6秒前
开朗之云完成签到,获得积分20
6秒前
liuguimin完成签到,获得积分10
7秒前
研友_VZG7GZ应助清爽的如冰采纳,获得10
7秒前
chongtse发布了新的文献求助10
7秒前
sgt发布了新的文献求助10
7秒前
7秒前
张继超完成签到,获得积分10
9秒前
10秒前
11秒前
RATHER发布了新的文献求助10
12秒前
12秒前
ysl完成签到,获得积分10
13秒前
wj发布了新的文献求助10
14秒前
14秒前
14秒前
鹿lu应助无情的语堂采纳,获得10
14秒前
14秒前
平淡的凌柏应助111采纳,获得10
15秒前
你看着我眼睛完成签到 ,获得积分10
16秒前
16秒前
牛肉汉堡发布了新的文献求助10
16秒前
无花果应助dahuihui采纳,获得30
16秒前
言帅帅发布了新的文献求助10
17秒前
17秒前
19秒前
顾矜应助李双艳采纳,获得10
20秒前
thang2完成签到,获得积分10
21秒前
肖肖发布了新的文献求助10
21秒前
清醒发布了新的文献求助10
21秒前
鹅鹅鹅发布了新的文献求助10
21秒前
无奈满天发布了新的文献求助10
21秒前
sgt完成签到,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701220
求助须知:如何正确求助?哪些是违规求助? 3251569
关于积分的说明 9875257
捐赠科研通 2963566
什么是DOI,文献DOI怎么找? 1625169
邀请新用户注册赠送积分活动 769876
科研通“疑难数据库(出版商)”最低求助积分说明 742582