A novel robust zero-watermarking algorithm for medical images

数字水印 水印 计算机科学 加密 稳健性(进化) 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 图像(数学) 奇异值分解 特征提取 算法 认证(法律)
作者
Kun Hu,Xiaochao Wang,Jianping Hu,Hongfei Wang,Hong Qin
出处
期刊:The Visual Computer [Springer Science+Business Media]
卷期号:37 (9-11): 2841-2853 被引量:1
标识
DOI:10.1007/s00371-021-02168-5
摘要

A novel robust zero-watermarking algorithm for medical images is presented in this paper. The multi-scale decomposition of bi-dimensional empirical mode decomposition (BEMD) has exhibited many attractive properties that enable the proposed algorithm to robustly detect the tampering regions and protect the copyright of medical images simultaneously. Given a medical image, we first decompose a medical image adaptively into a finite number of intrinsic mode functions (IMFs) and a residue, by taking a full advantage of BEMD. The first IMF starts with the finest scale retaining fragile information and is best suitable for tampering detection, while the residue includes robust information at the coarser scale and is applied to the protection of intellectual property rights of medical images. Next, the feature matrices are extracted from the first IMF and the residue via singular value decomposition, which achieves robust performance subject to most attacks. For a given watermark image, it is encrypted by Arnold transform to enhance the security of the watermark. Then, the feature images are constructed by performing the exclusive-or operation between the encrypted watermark image and the extracted feature matrices. Finally, the feature images are securely stored in the copyright authentication database to be further used for copyright authentication and tampering detection. A large number of experimental results and comparisons with existing watermarking algorithms confirm that the newly proposed watermarking algorithm not only has strong ability on tampering detection, but also has better performance in combating various attacks, including cropping, Gaussian noise, median filtering, image enhancement attacks, etc. The newly developed algorithm also shows great promise in processing natural images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助无心的鹤采纳,获得20
刚刚
小人物完成签到,获得积分20
刚刚
1秒前
朝阳完成签到,获得积分10
1秒前
1秒前
2秒前
invisiable完成签到,获得积分10
2秒前
马凤杰发布了新的文献求助10
2秒前
liii发布了新的文献求助10
2秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
川川完成签到,获得积分10
4秒前
4秒前
5秒前
真实的火车完成签到,获得积分10
5秒前
方东发布了新的文献求助10
5秒前
5秒前
6秒前
孙明浩发布了新的文献求助30
6秒前
梁业松发布了新的文献求助10
6秒前
科研通AI6应助qimingran采纳,获得10
7秒前
所所应助moreorless_zjh采纳,获得10
7秒前
薛wen晶发布了新的文献求助20
7秒前
8秒前
neverlost6发布了新的文献求助10
9秒前
9秒前
Ustinian发布了新的文献求助10
10秒前
嗨喔发布了新的文献求助10
10秒前
张敬轩劝你不要读博关注了科研通微信公众号
10秒前
10秒前
华仔应助多多多采纳,获得10
10秒前
星辰大海应助兔兔要睡觉采纳,获得10
11秒前
11秒前
搜集达人应助洪世贤采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933105
求助须知:如何正确求助?哪些是违规求助? 4201461
关于积分的说明 13052835
捐赠科研通 3975404
什么是DOI,文献DOI怎么找? 2178354
邀请新用户注册赠送积分活动 1194774
关于科研通互助平台的介绍 1106106