A novel robust zero-watermarking algorithm for medical images

数字水印 水印 计算机科学 加密 稳健性(进化) 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 图像(数学) 奇异值分解 特征提取 算法 认证(法律)
作者
Kun Hu,Xiaochao Wang,Jianping Hu,Hongfei Wang,Hong Qin
出处
期刊:The Visual Computer [Springer Nature]
卷期号:37 (9-11): 2841-2853 被引量:1
标识
DOI:10.1007/s00371-021-02168-5
摘要

A novel robust zero-watermarking algorithm for medical images is presented in this paper. The multi-scale decomposition of bi-dimensional empirical mode decomposition (BEMD) has exhibited many attractive properties that enable the proposed algorithm to robustly detect the tampering regions and protect the copyright of medical images simultaneously. Given a medical image, we first decompose a medical image adaptively into a finite number of intrinsic mode functions (IMFs) and a residue, by taking a full advantage of BEMD. The first IMF starts with the finest scale retaining fragile information and is best suitable for tampering detection, while the residue includes robust information at the coarser scale and is applied to the protection of intellectual property rights of medical images. Next, the feature matrices are extracted from the first IMF and the residue via singular value decomposition, which achieves robust performance subject to most attacks. For a given watermark image, it is encrypted by Arnold transform to enhance the security of the watermark. Then, the feature images are constructed by performing the exclusive-or operation between the encrypted watermark image and the extracted feature matrices. Finally, the feature images are securely stored in the copyright authentication database to be further used for copyright authentication and tampering detection. A large number of experimental results and comparisons with existing watermarking algorithms confirm that the newly proposed watermarking algorithm not only has strong ability on tampering detection, but also has better performance in combating various attacks, including cropping, Gaussian noise, median filtering, image enhancement attacks, etc. The newly developed algorithm also shows great promise in processing natural images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助LT采纳,获得10
2秒前
专注的安青完成签到 ,获得积分10
2秒前
李健应助qqq采纳,获得10
2秒前
2秒前
有魅力的朋友完成签到,获得积分10
4秒前
xiaofei完成签到 ,获得积分20
4秒前
充电宝应助lin采纳,获得10
5秒前
5秒前
酷波er应助动人的黄豆采纳,获得10
6秒前
杜明智发布了新的文献求助10
6秒前
6秒前
6秒前
小吴完成签到,获得积分10
6秒前
一叶孤舟发布了新的文献求助10
6秒前
Xy完成签到,获得积分10
7秒前
Hello应助微笑糖豆采纳,获得10
7秒前
Owen应助粗心的初蓝采纳,获得10
7秒前
Xingkun_li完成签到,获得积分10
8秒前
桐桐应助sherry采纳,获得10
8秒前
图雄争霸给图雄争霸的求助进行了留言
8秒前
希望天下0贩的0应助am采纳,获得10
9秒前
深情凡灵发布了新的文献求助10
10秒前
11秒前
吃个馍馍发布了新的文献求助10
11秒前
11秒前
英俊的铭应助sun采纳,获得10
12秒前
petrichor发布了新的文献求助10
13秒前
liuyuanhao完成签到,获得积分10
14秒前
hoshinoluo发布了新的文献求助10
14秒前
buno应助嵩嵩采纳,获得10
15秒前
月流瓦发布了新的文献求助10
15秒前
ZJJ完成签到,获得积分10
16秒前
16秒前
16秒前
烤鸭卷饼发布了新的文献求助10
17秒前
123完成签到,获得积分10
18秒前
慕青应助lym97采纳,获得30
18秒前
叮咚完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602452
求助须知:如何正确求助?哪些是违规求助? 4687577
关于积分的说明 14849885
捐赠科研通 4684010
什么是DOI,文献DOI怎么找? 2539871
邀请新用户注册赠送积分活动 1506630
关于科研通互助平台的介绍 1471428