Nondestructive Phenolic Compounds Measurement and Origin Discrimination of Peated Barley Malt Using Near-Infrared Hyperspectral Imagery and Machine Learning

高光谱成像 人工智能 支持向量机 主成分分析 稳健性(进化) 模式识别(心理学) 规范化(社会学) 计算机科学 相关系数 人工神经网络 遥感 化学 机器学习 地质学 生物化学 社会学 人类学 基因
作者
Yijun Yan,Jinchang Ren,Julius Tschannerl,Huimin Zhao,Barry Harrison,Frances Jack
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-15 被引量:13
标识
DOI:10.1109/tim.2021.3082274
摘要

Quantifying phenolic compound in peated barley malt and discriminating its origin are essential to maintain the aroma of high-quality Scottish whisky during the manufacturing process. The content of the total phenol varies in peated barley malts, which is critical in measuring the associated peatiness level. Existing methods for measuring such phenols are destructive and/or time-consuming. To tackle these issues, we propose in this article a novel nondestructive system for fast and effective estimating the phenolic concentrations and discriminating their origins with the near-infrared hyperspectral imagery and machine learning. First, novel ways of data acquisition and normalization are developed for robustness. Then, the principal component analysis (PCA) and folded PCA are fused for extracting the global and local spectral features, followed by the support vector machine (SVM)-based origin discrimination and deep neural network-based phenolic measurement. In total, 27 categories of peated barley malts from eight suppliers are utilized to form thousands of spectral samples for modeling. A classification accuracy up to 99.5% and a squared correlation coefficient up to 98.57% are achieved, outperforming a few state of the art. These have fully demonstrated the efficacy of our system in automated phenolic measurement and origin discrimination to benefit the quality monitoring in the whisky industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助梨子采纳,获得10
刚刚
爆米花应助局内人采纳,获得10
刚刚
刘大可发布了新的文献求助10
刚刚
无限的珠发布了新的文献求助10
刚刚
刚刚
牛奶发布了新的文献求助10
1秒前
1秒前
Leeyee发布了新的文献求助10
1秒前
2秒前
echo发布了新的文献求助10
2秒前
3秒前
文献互助完成签到,获得积分10
3秒前
3秒前
共享精神应助狂野书易采纳,获得10
4秒前
钱超完成签到,获得积分10
4秒前
学术完成签到 ,获得积分10
4秒前
FAN完成签到,获得积分10
5秒前
lxw发布了新的文献求助10
5秒前
Gigi发布了新的文献求助10
5秒前
ZJY发布了新的文献求助10
5秒前
叮叮车完成签到 ,获得积分10
6秒前
清爽源智发布了新的文献求助10
6秒前
LIO发布了新的文献求助10
7秒前
高大绝义发布了新的文献求助10
7秒前
卡卡西应助许多鱼采纳,获得10
7秒前
7秒前
9秒前
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198