Nondestructive Phenolic Compounds Measurement and Origin Discrimination of Peated Barley Malt Using Near-Infrared Hyperspectral Imagery and Machine Learning

高光谱成像 人工智能 支持向量机 主成分分析 稳健性(进化) 模式识别(心理学) 规范化(社会学) 计算机科学 相关系数 人工神经网络 遥感 化学 机器学习 社会学 地质学 基因 生物化学 人类学
作者
Yijun Yan,Jinchang Ren,Julius Tschannerl,Huimin Zhao,Barry Harrison,Frances Jack
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-15 被引量:13
标识
DOI:10.1109/tim.2021.3082274
摘要

Quantifying phenolic compound in peated barley malt and discriminating its origin are essential to maintain the aroma of high-quality Scottish whisky during the manufacturing process. The content of the total phenol varies in peated barley malts, which is critical in measuring the associated peatiness level. Existing methods for measuring such phenols are destructive and/or time-consuming. To tackle these issues, we propose in this article a novel nondestructive system for fast and effective estimating the phenolic concentrations and discriminating their origins with the near-infrared hyperspectral imagery and machine learning. First, novel ways of data acquisition and normalization are developed for robustness. Then, the principal component analysis (PCA) and folded PCA are fused for extracting the global and local spectral features, followed by the support vector machine (SVM)-based origin discrimination and deep neural network-based phenolic measurement. In total, 27 categories of peated barley malts from eight suppliers are utilized to form thousands of spectral samples for modeling. A classification accuracy up to 99.5% and a squared correlation coefficient up to 98.57% are achieved, outperforming a few state of the art. These have fully demonstrated the efficacy of our system in automated phenolic measurement and origin discrimination to benefit the quality monitoring in the whisky industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
英姑应助搞怪柔采纳,获得100
2秒前
hanhan完成签到,获得积分10
2秒前
xzy998发布了新的文献求助10
3秒前
神勇友灵完成签到,获得积分10
4秒前
4秒前
4秒前
壮观静柏发布了新的文献求助10
5秒前
5秒前
秋半梦应助Xiaopu采纳,获得10
5秒前
秋半梦应助Xiaopu采纳,获得10
5秒前
拼搏书完成签到,获得积分10
6秒前
踏实天空应助白头蝰采纳,获得30
7秒前
Rjy发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
wujiao完成签到,获得积分10
10秒前
所所应助10采纳,获得10
11秒前
脑洞疼应助pzd采纳,获得10
12秒前
完美世界应助曲书文采纳,获得10
13秒前
葭月十七发布了新的文献求助10
13秒前
threewei发布了新的文献求助10
13秒前
翻翻发布了新的文献求助30
14秒前
壮观静柏完成签到 ,获得积分10
14秒前
合适的猎豹完成签到 ,获得积分10
14秒前
秋半梦应助Xiaopu采纳,获得10
14秒前
Owen应助Annie采纳,获得10
15秒前
Solitude发布了新的文献求助20
17秒前
17秒前
李健应助风枫叶采纳,获得10
18秒前
温敏应助wanliduxing采纳,获得50
18秒前
哇咔咔发布了新的文献求助10
22秒前
由天与发布了新的文献求助100
22秒前
小蘑菇应助翻翻采纳,获得10
23秒前
26秒前
李爱国应助Rjy采纳,获得10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079