MFN2型
帕金
品脱1
自噬
医学
再灌注损伤
粒体自噬
氧化应激
缺血
线粒体
细胞凋亡
细胞生物学
生物
线粒体融合
内分泌学
内科学
生物化学
线粒体DNA
基因
疾病
帕金森病
作者
Wei-ning Kong,Wen Li,Chun Mei Bai,Yuan Dong,Yuan Wu,Wei An
摘要
Augmenter of liver regeneration (ALR) is an anti-apoptotic protein found mainly in mitochondria. It protects hepatocytes from ischemia-reperfusion (I/R) injury, but the underlying mechanism is not clear. We found that in rats, delivery of the ALR gene alleviated hepatic I/R injury during orthotopic liver transplantation as evidenced by reduced serum aminotransferase, oxidative stress and apoptosis, and increased expression of autophagy markers. In an in vitro hypoxia/reoxygenation (H/R) model, overexpression of the ALR gene activated autophagy and relieved defective mitophagy via the PINK1/Parkin pathway. Mechanistically, ALR transfection induced the expression of mitofusin 2 (Mfn2) in the H/R model, which led to PINK1 accumulation and mitochondrial translocation of Parkin. Deletion of Mfn2 abolished mitophagy activation induced by ALR transfection, promoted mitochondrial dysfunction, and eventually increased cell apoptosis. Mfn2 administration prevented the inhibition of mitophagy in ALR-knockout (KO) cells, thus attenuated mitochondrial dysfunction and cell apoptosis. In heterozygous ALR-knockout mice treated with a warm I/R injury, marked aggravation of liver injury was associated with mitophagy inhibition and reduction in Mfn2 expression. Taken together, our results confirm that ALR accelerated Parkin translocation and mitophagy via Mfn2, and protected hepatocytes from I/R-induced injury. Our findings provide a novel rationale for the treatment of hepatic I/R injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI