纳滤
渗滤
废水
电渗析
萃取(化学)
制浆造纸工业
盐度
废物管理
环境工程
化学
膜
反渗透
色谱法
环境科学
工程类
微滤
生物化学
生物
生态学
作者
Jiuyang Lin,Qin Chen,Xuan Huang,Zhongsen Yan,Xiaocheng Lin,Wenyuan Ye,Sotto Arcadio,Patricia Luis,Jinhong Bi,Bart Van der Bruggen,Shuaifei Zhao
标识
DOI:10.1016/j.jhazmat.2021.126505
摘要
Abstract Effective extraction of useful resources from high-salinity textile wastewater is a critical pathway for sustainable wastewater management. In this study, an integrated loose nanofiltration-electrodialysis process was explored for simultaneous recovery of dyes, NaCl and pure water from high-salinity textile wastewater, thus closing the material loop and minimizing waste emission. Specifically, a loose nanofiltration membrane (molecular weight cutoff of ~800 Da) was proposed to fractionate the dye and NaCl in the high-salinity textile wastewater. Through a nanofiltration-diafiltration unit, including a pre-concentration stage and a constant-volume diafiltration stage, the dye could be recovered from the high-salinity textile wastewater, being enriched at a factor of ~9.0, i.e., from 2.01 to 17.9 g·L−1 with 98.4% purity. Assisted with the subsequent implementation of electrodialysis, the NaCl concentrate and pure water were effectively reclaimed from the salt-containing permeate coming from the loose nanofiltration-diafiltration. Simultaneously, the produced pure water was further recycled to the nanofiltration-diafiltration unit. This study shows the potential of the integration of loose nanofiltation-diafiltration with electrodialysis for sufficient resource extraction from high-salinity textile wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI