How does machine learning compare to conventional econometrics for transport data sets? A test of ML versus MLE

范畴变量 梯度升压 随机森林 协变量 计量经济学 Boosting(机器学习) 多项式logistic回归 计算机科学 决策树 离散选择 普通最小二乘法 变量(数学) 统计 计量经济模型 机器学习 人工智能 数学 数学分析
作者
Weijia Li,Kara M. Kockelman
出处
期刊:Growth and Change [Wiley]
卷期号:53 (1): 342-376 被引量:14
标识
DOI:10.1111/grow.12587
摘要

Abstract Machine learning (ML) is being used regularly in many different fields. This paper compares traditional econometric methods that have better explanations of data analysis to ML methods, focusing on predicting, understanding and unpacking ML methods which have higher prediction accuracies of four key transport‐planning variables: household vehicle‐miles traveled (continuous variable), household vehicle ownership (count variable), mode choice (categorical variable), and land use change (categorical variable with strong spatial interactions). Here, the results of ten ML methods are compared to methods of ordinary least squares (OLS), multinomial logit (MNL), negative binomial and spatial auto‐regressive (SAR). The U.S.’s 2017 National Household Travel Survey and land use data sets from the Dallas‐Ft. Worth region of Texas are used. Results suggest traditional econometric methods work pretty well on the more continuous responses (VMT and vehicle ownership), but the random forest (RF), gradient boosting decision trees (GBDT), and extreme gradient boosting (XGBoost) methods delivered the best results, though the RF model required 30 to almost 60 times more computing time than XGBoost and GBDT methods. The RF, GBDT, XGBoost, light gradient boosting method (lightGBM), and catboost offer better results than other methods for the two “classification” cases, with lightGBM being the most time‐efficient. Importantly, ML methods captured the plateauing effect modelers may expect when extrapolating covariate effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
栀紫发布了新的文献求助10
刚刚
人类之光发布了新的文献求助10
刚刚
iNk应助科研通管家采纳,获得20
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
大模型应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助L112233采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
JIANG完成签到 ,获得积分10
2秒前
NexusExplorer应助科研通管家采纳,获得30
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
wxyshare应助科研通管家采纳,获得10
2秒前
忧虑的乐驹完成签到,获得积分10
2秒前
Mira完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
SciGPT应助ligechengzi采纳,获得30
3秒前
小青椒应助科研通管家采纳,获得150
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
Lucas应助ShawnFusion采纳,获得10
4秒前
NexusExplorer应助Una采纳,获得10
4秒前
胖胖胖胖应助林婧采纳,获得10
4秒前
背后书芹发布了新的文献求助10
4秒前
李鱼丸完成签到,获得积分10
4秒前
4秒前
5秒前
简单的大哥完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071726
求助须知:如何正确求助?哪些是违规求助? 4292308
关于积分的说明 13374017
捐赠科研通 4113125
什么是DOI,文献DOI怎么找? 2252237
邀请新用户注册赠送积分活动 1257248
关于科研通互助平台的介绍 1189987