Life cycle CO2 emissions for the new energy vehicles in China drawing on the reshaped survival pattern

电池(电) 卡车 汽车工程 电动汽车 运输工程 环境科学 电动汽车 工程类 功率(物理) 量子力学 物理
作者
Rujie Yu,Longze Cong,Yijing Hui,Dongchang Zhao,Biying Yu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:826: 154102-154102 被引量:39
标识
DOI:10.1016/j.scitotenv.2022.154102
摘要

Promoting new energy vehicles (NEVs) is the key to achieving net-zero emissions in the transportation sector. NEVs' total life cycle CO2 emissions are mainly determined by average vehicle lifespan, annual mileage traveled, energy carbon intensity and energy mix in the production stage. Current studies mainly adopt assumptions about NEVs' average lifespan due to limited available data. This paper expands on the previous studies by examining the NEVs' age and distribution based on the national representative China Compulsory Traffic Accident Liability Insurance for Motor Vehicles (CTALI) database from 2018 to 2020. Then, the survival patterns and lifespan of NEVs are assessed using Weibull distribution. New energy passenger vehicles' life cycle CO2 emissions are further evaluated based on the reshaped representative survival patterns. The results show that there are significant differences in survival patterns between conventional vehicles and NEVs. NEVs generally show a shorter average lifespan compared with conventional vehicles. Among NEVs, the average lifespan of plug-in hybrid electric vehicles (PHEVs) is better than that of battery electric vehicles (BEVs). The survival patterns of several types of electric vehicles (including passenger battery electric vehicles, non-operating light battery electric buses, and light battery electric trucks) do not have a stable period in their first few years of operation. The life cycle assessment results show that the total life cycle CO2 emissions of passenger BEVs and PHEVs are lower than those of conventional vehicles. However, the short lifespan dramatically increases the passenger BEV and PHEV total life cycle CO2 emissions per kilometer, resulting in passenger BEV total life cycle CO2 emissions per kilometer being higher than those of conventional vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
何何发布了新的文献求助10
3秒前
脉动完成签到,获得积分10
3秒前
3秒前
LiuXianBao完成签到,获得积分10
3秒前
情怀应助showmaker采纳,获得10
3秒前
星辰大海应助猜不猜不采纳,获得10
4秒前
安详的书琴完成签到,获得积分10
4秒前
丘比特应助开朗的大叔采纳,获得10
4秒前
羊羊吃肉不吃草完成签到 ,获得积分10
4秒前
Ganlou应助爱笑秀发采纳,获得10
4秒前
天天快乐应助ZKK采纳,获得10
5秒前
Lila发布了新的文献求助10
6秒前
松哥完成签到,获得积分10
6秒前
6秒前
在水一方应助ZZDXXX采纳,获得10
6秒前
枫叶猫扑发布了新的文献求助10
9秒前
ppy完成签到 ,获得积分10
9秒前
9秒前
研友_VZG7GZ应助激昂的中心采纳,获得10
9秒前
何何完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
大猛1完成签到,获得积分10
14秒前
14秒前
独特翠丝完成签到,获得积分10
16秒前
YYY关闭了YYY文献求助
16秒前
17秒前
大猛1发布了新的文献求助10
17秒前
ZZDXXX发布了新的文献求助10
17秒前
Cape发布了新的文献求助10
18秒前
biocreater完成签到,获得积分10
19秒前
昭明完成签到,获得积分10
19秒前
慕青应助直率的迎梅采纳,获得10
20秒前
David发布了新的文献求助10
20秒前
良辰应助冥冥之极为昭昭采纳,获得10
20秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306734
求助须知:如何正确求助?哪些是违规求助? 2940503
关于积分的说明 8497350
捐赠科研通 2614699
什么是DOI,文献DOI怎么找? 1428415
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259