Life cycle CO2 emissions for the new energy vehicles in China drawing on the reshaped survival pattern

电池(电) 卡车 汽车工程 电动汽车 运输工程 环境科学 电动汽车 工程类 功率(物理) 量子力学 物理
作者
Rujie Yu,Longze Cong,Yijing Hui,Dongchang Zhao,Biying Yu
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:826: 154102-154102 被引量:39
标识
DOI:10.1016/j.scitotenv.2022.154102
摘要

Promoting new energy vehicles (NEVs) is the key to achieving net-zero emissions in the transportation sector. NEVs' total life cycle CO2 emissions are mainly determined by average vehicle lifespan, annual mileage traveled, energy carbon intensity and energy mix in the production stage. Current studies mainly adopt assumptions about NEVs' average lifespan due to limited available data. This paper expands on the previous studies by examining the NEVs' age and distribution based on the national representative China Compulsory Traffic Accident Liability Insurance for Motor Vehicles (CTALI) database from 2018 to 2020. Then, the survival patterns and lifespan of NEVs are assessed using Weibull distribution. New energy passenger vehicles' life cycle CO2 emissions are further evaluated based on the reshaped representative survival patterns. The results show that there are significant differences in survival patterns between conventional vehicles and NEVs. NEVs generally show a shorter average lifespan compared with conventional vehicles. Among NEVs, the average lifespan of plug-in hybrid electric vehicles (PHEVs) is better than that of battery electric vehicles (BEVs). The survival patterns of several types of electric vehicles (including passenger battery electric vehicles, non-operating light battery electric buses, and light battery electric trucks) do not have a stable period in their first few years of operation. The life cycle assessment results show that the total life cycle CO2 emissions of passenger BEVs and PHEVs are lower than those of conventional vehicles. However, the short lifespan dramatically increases the passenger BEV and PHEV total life cycle CO2 emissions per kilometer, resulting in passenger BEV total life cycle CO2 emissions per kilometer being higher than those of conventional vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yan123发布了新的文献求助10
2秒前
2秒前
充电宝应助yyj采纳,获得10
2秒前
马静雨发布了新的文献求助10
2秒前
云游归尘发布了新的文献求助10
3秒前
4秒前
111发布了新的文献求助10
4秒前
寰宇完成签到,获得积分10
4秒前
4秒前
5秒前
花田雨桐发布了新的文献求助10
5秒前
5秒前
小马甲应助lieditongxu采纳,获得10
5秒前
Jenny应助yan123采纳,获得10
6秒前
狂野的以珊完成签到,获得积分10
6秒前
6秒前
a1oft发布了新的文献求助10
7秒前
7秒前
7秒前
笨笨的不斜完成签到,获得积分10
7秒前
xtqgyy发布了新的文献求助10
7秒前
8秒前
Cat完成签到,获得积分0
8秒前
科研小菜完成签到,获得积分10
9秒前
江南烟雨如笙完成签到,获得积分10
9秒前
9秒前
stt关闭了stt文献求助
9秒前
10秒前
yangang发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
zhui发布了新的文献求助10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
文献缺缺应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794