ID-YOLO: Real-Time Salient Object Detection Based on the Driver’s Fixation Region

人工智能 目标检测 突出 计算机视觉 计算机科学 固定(群体遗传学) 对象(语法) 计算机图形学(图像) 模式识别(心理学) 医学 环境卫生 人口
作者
Long Qin,Yi Shi,Yahui He,Junrui Zhang,Xian-Shi Zhang,Yongjie Li,Tao Deng,Hongmei Yan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 15898-15908 被引量:33
标识
DOI:10.1109/tits.2022.3146271
摘要

Object detection is an important task for self-driving vehicles or advanced driver assistant systems (ADASs). Additionally, visual selective attention is a crucial neural mechanism in a driver's vision system that can rapidly filter out unnecessary visual information in a driving scene. Some existing models detect all objects in driving scenes from the aspect of computer vision. However, in a rapidly changing driving environment, detecting salient or critical objects appearing in drivers' interested or safety-relevant areas is more useful for ADASs. In this paper, we managed to detect salient and critical objects based on drivers' fixation regions. To this end, we built an augmented eye tracking object detection (ETOD) dataset based on driving videos with multiple drivers' eye movement collected by Deng et al. Furthermore, we proposed a real-time salient object detection network named increase-decrease YOLO (ID-YOLO) to discriminate the critical objects within the drivers' fixation region. The proposed ID-YOLO shows excellent detection of major objects that drivers are concerned about during driving. Compared with the present object detection models in autonomous and assisted driving systems, our object detection framework simulates the selective attention mechanism of drivers. Thus, it does not detect all of the objects appearing in the driving scenes but only detects the most relevant ones for driving safety. It can largely reduce the interference of irrelevant scene information, showing potential practical applications in intelligent or assisted driving systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红鲤发布了新的文献求助10
刚刚
听话的摩托完成签到,获得积分10
1秒前
1秒前
酷酷笑容发布了新的文献求助10
1秒前
苹果煎饼发布了新的文献求助10
2秒前
catzhou发布了新的文献求助10
2秒前
dengx1发布了新的文献求助10
4秒前
5秒前
清澄发布了新的文献求助10
5秒前
6秒前
miaomiao发布了新的文献求助10
6秒前
6秒前
acadedog发布了新的文献求助10
6秒前
李健的小迷弟应助bear采纳,获得10
9秒前
不吃香菜完成签到,获得积分10
10秒前
10秒前
10秒前
田様应助尊敬的靖琪采纳,获得10
10秒前
陶醉觅夏发布了新的文献求助10
11秒前
殊荣发布了新的文献求助10
11秒前
11秒前
雪妮儿发布了新的文献求助10
11秒前
科研通AI2S应助gogogo采纳,获得10
11秒前
纯纯的牛马完成签到,获得积分20
12秒前
汎影完成签到,获得积分10
12秒前
画大饼完成签到,获得积分10
12秒前
Orange应助酷酷笑容采纳,获得30
12秒前
qqqqqqy应助桃花源的瓶起子采纳,获得10
14秒前
Gyy完成签到,获得积分20
14秒前
我是老大应助zhangxf608采纳,获得10
14秒前
Yiers完成签到,获得积分10
14秒前
lcs发布了新的文献求助10
15秒前
scy发布了新的文献求助10
16秒前
miaomiao完成签到,获得积分10
16秒前
17秒前
孙老师完成签到 ,获得积分10
17秒前
AoAoo发布了新的文献求助10
17秒前
赵依乐完成签到 ,获得积分10
18秒前
陆陆发布了新的文献求助20
19秒前
852应助独享属于自己的风采纳,获得10
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231417
求助须知:如何正确求助?哪些是违规求助? 2878528
关于积分的说明 8206536
捐赠科研通 2545962
什么是DOI,文献DOI怎么找? 1375570
科研通“疑难数据库(出版商)”最低求助积分说明 647437
邀请新用户注册赠送积分活动 622521