The fishmeal adulteration identification based on microscopic image and deep learning

人工智能 模式识别(心理学) 预处理器 鉴定(生物学) 特征(语言学) 像素 精确性和召回率 棱锥(几何) 计算机视觉 计算机科学 数学 几何学 语言学 植物 生物 哲学
作者
Jie Geng,Jing Liu,Xianrui Kong,Bosheng Shen,Zhiyou Niu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 106974-106974 被引量:6
标识
DOI:10.1016/j.compag.2022.106974
摘要

The fishmeal adulteration identification based on microscopic image and deep learning was studied in this paper, which included the qualitative identification and component recognition of adulterated fishmeal. Mobilenetv2 was chosen as the qualitative identification model to distinguish between fishmeal samples and adulterated samples. And the accuracy, precision, recall, and F1-measure of the test set were adopted as the evaluation indicators. The YOLOv3-Mobilenetv2 was selected as the component recognition model to distinguish components in adulterated samples, in which the feature pyramid structure and multi-scale feature fusion strategy were applied to solve the multi-scale problem in object detection. And the mean average precision (mAP) was adopted as the precision evaluation index and the frame per second (FPS) as the speed evaluation index of the component recognition model. At the same time, the effects of image enhancement preprocessing and resolution on the identification of fishmeal adulteration were also considered in this paper. It was shown that Mobilenetv2 was more suitable for qualitative identification when using the local constrained mask transformed microscopic images with a resolution of 224 × 224 pixels. The average accuracy, precision, recall, and F1-measure of the model were 93.02%, 93.11%, 93.25%, and 92.69% respectively. The improved YOLOv3-Mobilenetv2 was more suitable for component recognition with a resolution of 608 × 608 pixels. The mAP reached 78.49%, and the FPS was 45.97 f·s−1. The model of fishmeal adulteration identification adopted in this paper had high accuracy, which could quickly identify adulterated fishmeal and recognize components, and provide a new method and reference for improving the objectivity of fishmeal adulteration identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUMOS完成签到,获得积分10
刚刚
氯吡格雷完成签到,获得积分10
刚刚
听语说完成签到,获得积分10
刚刚
梅比乌斯博士救救我完成签到,获得积分10
刚刚
小不点完成签到,获得积分10
刚刚
刚刚
科研通AI6应助Ryanchow采纳,获得10
刚刚
1秒前
zyq完成签到,获得积分10
1秒前
冷艳越泽发布了新的文献求助10
1秒前
mark完成签到,获得积分10
2秒前
bjcyqz发布了新的文献求助10
2秒前
我是老大应助Z1采纳,获得10
2秒前
冯梦梦完成签到 ,获得积分10
2秒前
3秒前
wind完成签到,获得积分10
3秒前
3秒前
高高树叶完成签到 ,获得积分10
3秒前
氯吡格雷发布了新的文献求助10
4秒前
小贝壳要快乐吖完成签到,获得积分10
4秒前
关亚娜发布了新的文献求助10
4秒前
哈哈完成签到,获得积分10
4秒前
5秒前
FJ完成签到,获得积分10
5秒前
JamesPei应助坚强三德采纳,获得100
5秒前
慕青应助飞飞飞采纳,获得10
5秒前
紫气东来应助燕不留声采纳,获得10
5秒前
科研工作者完成签到,获得积分10
5秒前
活泼的冬瓜完成签到,获得积分10
5秒前
wind发布了新的文献求助10
5秒前
Fighting完成签到,获得积分10
5秒前
CipherSage应助yu采纳,获得10
5秒前
Jue完成签到,获得积分10
6秒前
麻黄阿葵完成签到,获得积分10
6秒前
白日幻想家完成签到 ,获得积分10
6秒前
111发布了新的文献求助10
6秒前
东方雨季完成签到,获得积分10
7秒前
你好完成签到 ,获得积分10
7秒前
小天完成签到,获得积分10
7秒前
万物生完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658821
求助须知:如何正确求助?哪些是违规求助? 4824516
关于积分的说明 15083291
捐赠科研通 4817352
什么是DOI,文献DOI怎么找? 2578137
邀请新用户注册赠送积分活动 1532856
关于科研通互助平台的介绍 1491634