The fishmeal adulteration identification based on microscopic image and deep learning

人工智能 模式识别(心理学) 预处理器 鉴定(生物学) 特征(语言学) 像素 精确性和召回率 棱锥(几何) 计算机视觉 计算机科学 数学 几何学 语言学 植物 生物 哲学
作者
Jie Geng,Jing Liu,Xianrui Kong,Bosheng Shen,Zhiyou Niu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 106974-106974 被引量:6
标识
DOI:10.1016/j.compag.2022.106974
摘要

The fishmeal adulteration identification based on microscopic image and deep learning was studied in this paper, which included the qualitative identification and component recognition of adulterated fishmeal. Mobilenetv2 was chosen as the qualitative identification model to distinguish between fishmeal samples and adulterated samples. And the accuracy, precision, recall, and F1-measure of the test set were adopted as the evaluation indicators. The YOLOv3-Mobilenetv2 was selected as the component recognition model to distinguish components in adulterated samples, in which the feature pyramid structure and multi-scale feature fusion strategy were applied to solve the multi-scale problem in object detection. And the mean average precision (mAP) was adopted as the precision evaluation index and the frame per second (FPS) as the speed evaluation index of the component recognition model. At the same time, the effects of image enhancement preprocessing and resolution on the identification of fishmeal adulteration were also considered in this paper. It was shown that Mobilenetv2 was more suitable for qualitative identification when using the local constrained mask transformed microscopic images with a resolution of 224 × 224 pixels. The average accuracy, precision, recall, and F1-measure of the model were 93.02%, 93.11%, 93.25%, and 92.69% respectively. The improved YOLOv3-Mobilenetv2 was more suitable for component recognition with a resolution of 608 × 608 pixels. The mAP reached 78.49%, and the FPS was 45.97 f·s−1. The model of fishmeal adulteration identification adopted in this paper had high accuracy, which could quickly identify adulterated fishmeal and recognize components, and provide a new method and reference for improving the objectivity of fishmeal adulteration identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
He完成签到 ,获得积分10
3秒前
泉水发布了新的文献求助50
5秒前
5秒前
Ecokarster应助Ever采纳,获得10
6秒前
6秒前
juls发布了新的文献求助10
7秒前
李健的粉丝团团长应助Mine采纳,获得30
8秒前
bkagyin应助陈杭鑫采纳,获得10
8秒前
杏林靴子发布了新的文献求助10
8秒前
呀呀呀发布了新的文献求助10
8秒前
8秒前
火山蜗牛发布了新的文献求助10
9秒前
李笑发布了新的文献求助10
10秒前
Alex发布了新的文献求助10
12秒前
Jasper应助文献进入大脑采纳,获得10
12秒前
yang发布了新的文献求助10
12秒前
刘子完成签到,获得积分10
13秒前
13秒前
14秒前
刘强东完成签到,获得积分20
14秒前
14秒前
14秒前
城南花已开完成签到,获得积分20
14秒前
15秒前
15秒前
会撒娇的书白完成签到 ,获得积分10
16秒前
时尚的念云完成签到,获得积分10
17秒前
Lizhe123发布了新的文献求助10
17秒前
17秒前
WCheng发布了新的文献求助10
18秒前
xiaoyao完成签到,获得积分10
18秒前
搜集达人应助布溜采纳,获得10
18秒前
贝贝完成签到,获得积分10
19秒前
善学以致用应助刘强东采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得30
20秒前
CR7应助科研通管家采纳,获得20
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992928
求助须知:如何正确求助?哪些是违规求助? 3533703
关于积分的说明 11263585
捐赠科研通 3273517
什么是DOI,文献DOI怎么找? 1806067
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629