Effects of Physiological Signals in Different Types of Multimodal Sentiment Estimation

不可见的 情绪分析 计算机科学 模式 人工智能 估计 光学(聚焦) 自然语言处理 融合 机器学习 语音识别 数学 语言学 计量经济学 社会科学 哲学 物理 管理 社会学 光学 经济
作者
Shun Katada,Shogo Okada,Kazunori Komatani
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 2443-2457 被引量:12
标识
DOI:10.1109/taffc.2022.3155604
摘要

Multimodal sentiment analysis has become a focus of research in recent years. However, most studies of multimodal sentiment analysis have considered only signals that are observable by humans, such as linguistic, audio and visual information, whereas the contribution of the multimodal fusion of such signals with unobservable signals, i.e., physiological signals, has not been comprehensively explored. In this study, we aim to investigate effects of physiological signals in multimodal sentiment analysis by evaluating all of the fusion models for different types of sentiment estimation in naturalistic human-agent interaction settings. Our results suggest that physiological features are effective in the unimodal model and that the fusion of linguistic representations with physiological features provides the best results for estimating self-sentiment labels as annotated by the users themselves. In contrast, the tensor fusion of linguistic representations with audiovisual features is effective for estimating sentiment labels as annotated by a third party in regression tasks, which can be derived from the corresponding signals that are observable by humans. A detailed analysis of the self-sentiment estimation results suggests that different modalities play different roles in sentiment estimation, and corresponding implications are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通透科研完成签到,获得积分10
1秒前
思睿拜发布了新的文献求助10
2秒前
2秒前
Felix发布了新的文献求助10
4秒前
6秒前
平常的可乐完成签到 ,获得积分10
6秒前
栎阳完成签到,获得积分20
7秒前
清风发布了新的文献求助10
7秒前
弃文从李完成签到,获得积分10
9秒前
ygx发布了新的文献求助10
9秒前
10秒前
wang发布了新的文献求助10
12秒前
da_line发布了新的文献求助10
13秒前
14秒前
今后应助Okayoooooo采纳,获得10
15秒前
15秒前
大方的笑萍完成签到 ,获得积分10
17秒前
高高笙发布了新的文献求助10
19秒前
思睿拜完成签到,获得积分10
20秒前
二十四桥发布了新的文献求助30
20秒前
21秒前
21秒前
小蘑菇应助行路人采纳,获得10
21秒前
21秒前
22秒前
研友_nPkl9L发布了新的文献求助30
23秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
24秒前
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
啊元完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517