化学
化学物理
电子
离子键合
过渡金属
化学稳定性
金属
八面体
结晶学
离子
晶体结构
物理
生物化学
量子力学
催化作用
有机化学
作者
Se Hwang Kang,Dinesh Thapa,Binod Regmi,Siyuan Ren,Young‐Min Kim,Seong‐Gon Kim,Sung Wng Kim
摘要
Electrides, which are ionic crystals composed of excess anionic electrons, are of great interest as an exotic material for fundamental research and practical applications in broad fields of science and technology. However, an inherent chemical instability under ambient conditions at room temperature has been a fatal drawback to be addressed. Here, we report that transition metal-rich monochalcogenides are an emerging class of low-dimensional electrides with excellent chemical and thermal stability in air and water at room temperature through a comprehensive exploration of theoretical prediction and experimental verification. We predict new two-dimensional (2D) electrides crystallized in hexagonal P3̅m1 and P63/mmc structures with strong localization of anionic electrons in a dumbbell shape at the tetrahedral cavity of the interlayer space, which are distinct from the anionic electrons localized at the octahedral cavity in the hexagonal R3̅m structure of the previous 2D [Ca2N]+·e- and [Y2C]2+·2e- electrides. We successfully synthesized the room-temperature stable [Ti2O]2+·2e-, [Ti2S]2+·2e-, [Zr2S]2+·2e-, and primary solid solution [Hf2SxSe1-x]2+·2e- electrides, showing no structural degradation in air and water. Among them, we found that the synthesized [Ti2S]2+·2e- and [Zr2S]2+·2e- electrides are crystallized in orthorhombic symmetry (Pnnm), showing the feature of a one-dimensional (1D) electride with an anionic electron chain, which has never been reported yet. In addition to the successful finding of new 1D and 2D electrides, we discuss the self-passivation effect-driven chemical stability and the role of anionic electrons in determining the physical properties of the newly discovered electrides.
科研通智能强力驱动
Strongly Powered by AbleSci AI