Cross-Mix Monitoring for Medical Image Segmentation With Limited Supervision

计算机科学 人工智能 灵活性(工程) 机器学习 一致性(知识库) 分割 一般化 深度学习 判别式 人工神经网络 块(置换群论) 几何学 数学 统计 数学分析
作者
Yucheng Shu,Hengbo Li,Bin Xiao,Xiuli Bi,Weisheng Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 1700-1712 被引量:19
标识
DOI:10.1109/tmm.2022.3154159
摘要

Image segmentation is a fundamental building block of automatic medical applications. It has been greatly improved since the emergence of deep neural networks. However, deep-learning based models often require a large number of manual annotations, which has seriously hindered its practical usage. To alleviate this problem, numerous works were proposed by utilizing unlabeled data based on semi-supervised frameworks. Recently, the Mean-Teacher (MT) model has been successfully applied in many scenarios due to its effective learning strategy. Nevertheless, the existing MT model still have certain limitations. Firstly, various sorts of perturbations are often added to the training data to gain extra generalization ability through consistency training. However, if the variation is too weak, it may cause the Lazy Student Phenomenon, and bring large fluctuations to the learning model. On the contrary, large image perturbations may enlarge the performance gap between the teacher and student. In this case, the student may lose its learning momentum, and more seriously, drag down the overall performance of the whole system. In order to address these issues, we introduce a novel semi-supervised medical image segmentation framework, in which a Cross-Mix Teaching paradigm is proposed to provide extra data flexibility, thus effectively avoid Lazy Student Phenomenon. Moreover, a lightweight Transductive Monitor is applied to server as the bridge that connect the teacher and student for active knowledge distillation. In the light of this cross-network information mixing and transfer mechanism, our method is able to continuously explore the discriminative information contained in unlabeled data. Extensive experiments on challenging medical image data sets demonstrate that our method is able to outperform current state-of-the-art semi-supervised segmentation methods under severe lack of supervision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助Ultraviolet采纳,获得10
刚刚
迷你的菲鹰完成签到,获得积分10
1秒前
腼腆的寄凡完成签到,获得积分10
1秒前
lalalala发布了新的文献求助10
2秒前
Orange应助ch采纳,获得10
2秒前
3秒前
3秒前
大模型应助854fycchjh采纳,获得10
4秒前
风趣的小鸽子完成签到,获得积分10
5秒前
5秒前
6秒前
苏世发布了新的文献求助10
6秒前
Hypnos完成签到,获得积分10
6秒前
快乐棒棒糖完成签到,获得积分10
8秒前
潇洒雁梅发布了新的文献求助10
9秒前
夏天完成签到,获得积分10
10秒前
lan发布了新的文献求助10
10秒前
咬经受搓狐臭空调完成签到,获得积分10
11秒前
研究牲完成签到,获得积分10
11秒前
11秒前
12秒前
JamesPei应助立秋呀采纳,获得10
13秒前
control完成签到,获得积分10
14秒前
14秒前
蓝桉完成签到,获得积分10
15秒前
无敌的番茄炒蛋应助对于采纳,获得20
16秒前
ding应助平淡雅霜采纳,获得10
16秒前
17秒前
ch发布了新的文献求助30
17秒前
18秒前
hhhhyhhh完成签到,获得积分10
19秒前
19秒前
xj发布了新的文献求助10
20秒前
科研通AI5应助你管得着吗采纳,获得10
20秒前
Xu发布了新的文献求助10
21秒前
榴莲完成签到,获得积分10
23秒前
Mississippiecho完成签到,获得积分10
24秒前
pluto应助高贵的路人采纳,获得10
24秒前
854fycchjh发布了新的文献求助10
25秒前
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794