Flexible Multiview Spectral Clustering With Self-Adaptation

聚类分析 计算机科学 光谱聚类 判别式 人工智能 图形 嵌入 模式识别(心理学) 理论计算机科学
作者
Dan Shi,Lei Zhu,Jingjing Li,Zhiyong Cheng,Zheng Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (4): 2586-2599 被引量:19
标识
DOI:10.1109/tcyb.2021.3131749
摘要

Multiview spectral clustering (MVSC) has achieved state-of-the-art clustering performance on multiview data. Most existing approaches first simply concatenate multiview features or combine multiple view-specific graphs to construct a unified fusion graph and then perform spectral embedding and cluster label discretization with k -means to obtain the final clustering results. They suffer from an important drawback: all views are treated as fixed when fusing multiple graphs and equal when handling the out-of-sample extension. They cannot adaptively differentiate the discriminative capabilities of multiview features. To alleviate these problems, we propose a flexible MVSC with self-adaptation (FMSCS) method in this article. A self-adaptive learning scheme is designed for structured graph construction, multiview graph fusion, and out-of-sample extension. Specifically, we learn a fusion graph with a desirable clustering structure by adaptively exploiting the complementarity of different view features under the guidance of a proper rank constraint. Meanwhile, we flexibly learn multiple projection matrices to handle the out-of-sample extension by adaptively adjusting the view combination weights according to the specific contents of unseen data. Finally, we derive an alternate optimization strategy that guarantees desirable convergence to iteratively solve the formulated unified learning model. Extensive experiments demonstrate the superiority of our proposed method compared with state-of-the-art MVSC approaches. For the purpose of reproducibility, we provide the code and testing datasets at https://github.com/shidan0122/FMICS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
智慧大狗发布了新的文献求助10
1秒前
苹果垣发布了新的文献求助10
1秒前
友好的夏之完成签到,获得积分10
1秒前
所所应助S.采纳,获得10
1秒前
科研張发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
问天发布了新的文献求助10
3秒前
上官若男应助nite采纳,获得10
3秒前
无花果应助2804980075采纳,获得10
5秒前
小白鼠关注了科研通微信公众号
5秒前
6秒前
挡住所有坏运气888完成签到,获得积分10
6秒前
烟花应助虫虫采纳,获得20
6秒前
充电宝应助wangtingyu采纳,获得10
7秒前
wanci应助KKIII采纳,获得10
7秒前
坚定尔白完成签到,获得积分10
8秒前
旧时浮尘发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
心灵美千易完成签到,获得积分10
9秒前
开朗紫完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
yrw完成签到,获得积分10
11秒前
12秒前
帅气的Bond完成签到,获得积分10
12秒前
12秒前
SEMA3C发布了新的文献求助10
14秒前
zzz完成签到,获得积分10
14秒前
挺喜欢你发布了新的文献求助20
15秒前
欣喜无色发布了新的文献求助10
15秒前
共享精神应助甜美书瑶采纳,获得10
15秒前
小白求文章完成签到,获得积分10
15秒前
小丸子发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552733
求助须知:如何正确求助?哪些是违规求助? 3128816
关于积分的说明 9379625
捐赠科研通 2827928
什么是DOI,文献DOI怎么找? 1554818
邀请新用户注册赠送积分活动 725573
科研通“疑难数据库(出版商)”最低求助积分说明 715031