Vibrational health risk assessment for truck operators in mining using artificial neural network

卡车 全身振动 人工神经网络 航程(航空) 振动 汽车工程 工程类 运输工程 环境科学 结构工程 计算机科学 机器学习 声学 航空航天工程 物理
作者
Mohammad Javad Rahimdel,Mehdi Mirzaei,Javad Sattarvand
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:236 (13): 2991-3004 被引量:2
标识
DOI:10.1177/09544070211064472
摘要

Operators of mining vehicles are frequently exposed to harmful levels of whole-body vibration (WBV). Long time exposure to WBV causes backache and has non-ergonomic effects on the human body. Exposure levels of the WBV have already been evaluated for different vehicles. Among these vehicles, mining trucks usually operate at the various working phases and also in different haul road conditions. This paper aims to develop a simultaneous integrated model to predict the WBV exposure for mining truck drivers. Considering the effect of the speed level, weight and geometry of load on the WBV exposure for the mining truck drivers are limited. There is not much research to predict the vibrational health risk level in conditions with no or missing data, as well. The root mean squire (RMS) of the vertical vibration of the seat and cabin floor was obtained during different operational conditions of an open pit mine in Iran. Then an artificial neural network was designed for the prediction of the vibrational health risk level. Regarding the results of this study, haul road quality, speed level, and load profile had a significant effect on vibration exposure. The average of the RMS values were 0.942 and 1.176 m/s 2 for the good and poor road conditions, respectively that are in the high health risk levels. However, there was no significant relationship between the payloads, in the range of 20 to 30 tons, in the RMS values. At speeds higher than 30 km/h, the vibrational health risk was at high level for all conditions. Moreover, there were 93.83% correlation between the measured and simulated RMS values was found in the application of the neural network. This paper helps the mine managers to predict the unsafe conditions and consider the practical approach for the WBV risk reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ting完成签到,获得积分10
1秒前
滴答dddd完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
HTY完成签到 ,获得积分10
2秒前
bkagyin应助buzhinianjiu采纳,获得10
3秒前
善良梦竹完成签到 ,获得积分10
3秒前
乐乐应助NONO采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
rayqiang完成签到,获得积分10
4秒前
MoonFlows应助科研通管家采纳,获得20
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
浅香千雪发布了新的文献求助10
4秒前
冷傲菠萝完成签到 ,获得积分10
4秒前
叶叶完成签到,获得积分10
7秒前
资山雁完成签到 ,获得积分10
7秒前
Eden完成签到,获得积分10
7秒前
8秒前
Singularity应助overThat采纳,获得10
8秒前
huhuan完成签到,获得积分10
9秒前
jcduoduo完成签到,获得积分10
11秒前
太叔文博完成签到,获得积分10
12秒前
科研通AI2S应助潇洒采纳,获得10
12秒前
12秒前
小可爱完成签到,获得积分10
14秒前
neverever完成签到,获得积分10
15秒前
18秒前
18秒前
Sabrina完成签到,获得积分10
19秒前
YXIAN完成签到,获得积分10
19秒前
赘婿应助小何采纳,获得10
19秒前
无私的朝雪完成签到 ,获得积分10
19秒前
怕黑盼山完成签到,获得积分10
20秒前
hustscholar完成签到,获得积分10
22秒前
Linus完成签到 ,获得积分10
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150658
求助须知:如何正确求助?哪些是违规求助? 2802207
关于积分的说明 7846456
捐赠科研通 2459547
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628821
版权声明 601757