Vibrational health risk assessment for truck operators in mining using artificial neural network

卡车 全身振动 人工神经网络 航程(航空) 振动 汽车工程 工程类 运输工程 环境科学 结构工程 计算机科学 机器学习 声学 物理 航空航天工程
作者
Mohammad Javad Rahimdel,Mehdi Mirzaei,Javad Sattarvand
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:236 (13): 2991-3004 被引量:2
标识
DOI:10.1177/09544070211064472
摘要

Operators of mining vehicles are frequently exposed to harmful levels of whole-body vibration (WBV). Long time exposure to WBV causes backache and has non-ergonomic effects on the human body. Exposure levels of the WBV have already been evaluated for different vehicles. Among these vehicles, mining trucks usually operate at the various working phases and also in different haul road conditions. This paper aims to develop a simultaneous integrated model to predict the WBV exposure for mining truck drivers. Considering the effect of the speed level, weight and geometry of load on the WBV exposure for the mining truck drivers are limited. There is not much research to predict the vibrational health risk level in conditions with no or missing data, as well. The root mean squire (RMS) of the vertical vibration of the seat and cabin floor was obtained during different operational conditions of an open pit mine in Iran. Then an artificial neural network was designed for the prediction of the vibrational health risk level. Regarding the results of this study, haul road quality, speed level, and load profile had a significant effect on vibration exposure. The average of the RMS values were 0.942 and 1.176 m/s 2 for the good and poor road conditions, respectively that are in the high health risk levels. However, there was no significant relationship between the payloads, in the range of 20 to 30 tons, in the RMS values. At speeds higher than 30 km/h, the vibrational health risk was at high level for all conditions. Moreover, there were 93.83% correlation between the measured and simulated RMS values was found in the application of the neural network. This paper helps the mine managers to predict the unsafe conditions and consider the practical approach for the WBV risk reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助yangyang采纳,获得10
刚刚
慕青应助欢欢采纳,获得10
1秒前
小憩完成签到,获得积分10
1秒前
南乔发布了新的文献求助10
1秒前
张静静发布了新的文献求助10
2秒前
云儿完成签到,获得积分10
2秒前
淡淡的洋葱完成签到,获得积分10
2秒前
小洲王先生完成签到,获得积分10
3秒前
3秒前
dd完成签到,获得积分10
3秒前
3秒前
4秒前
CCL应助kk2024采纳,获得50
4秒前
wjs0406完成签到,获得积分10
4秒前
自爱悠然发布了新的文献求助10
4秒前
贺雪完成签到,获得积分10
5秒前
5秒前
玉yu发布了新的文献求助10
6秒前
深情秋刀鱼完成签到,获得积分10
6秒前
星辰大海应助冷酷尔琴采纳,获得10
6秒前
6秒前
6秒前
隐形的大有完成签到,获得积分10
7秒前
浩浩大人发布了新的文献求助10
7秒前
buno应助圈圈采纳,获得10
7秒前
8秒前
隐形曼青应助Bo采纳,获得10
8秒前
西宁阿应助啵乐乐采纳,获得10
8秒前
8秒前
阿仔爱学习完成签到,获得积分10
8秒前
为喵驾车的月亮完成签到,获得积分20
9秒前
9秒前
membrane应助Mon_zh采纳,获得20
9秒前
10秒前
10秒前
hhy发布了新的文献求助10
10秒前
故意的傲玉应助结实煎饼采纳,获得200
11秒前
乐观的一一完成签到,获得积分10
11秒前
zwzw1314完成签到,获得积分10
11秒前
001发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740