Vibrational health risk assessment for truck operators in mining using artificial neural network

卡车 全身振动 人工神经网络 航程(航空) 振动 汽车工程 工程类 运输工程 环境科学 结构工程 计算机科学 机器学习 声学 物理 航空航天工程
作者
Mohammad Javad Rahimdel,Mehdi Mirzaei,Javad Sattarvand
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:236 (13): 2991-3004 被引量:2
标识
DOI:10.1177/09544070211064472
摘要

Operators of mining vehicles are frequently exposed to harmful levels of whole-body vibration (WBV). Long time exposure to WBV causes backache and has non-ergonomic effects on the human body. Exposure levels of the WBV have already been evaluated for different vehicles. Among these vehicles, mining trucks usually operate at the various working phases and also in different haul road conditions. This paper aims to develop a simultaneous integrated model to predict the WBV exposure for mining truck drivers. Considering the effect of the speed level, weight and geometry of load on the WBV exposure for the mining truck drivers are limited. There is not much research to predict the vibrational health risk level in conditions with no or missing data, as well. The root mean squire (RMS) of the vertical vibration of the seat and cabin floor was obtained during different operational conditions of an open pit mine in Iran. Then an artificial neural network was designed for the prediction of the vibrational health risk level. Regarding the results of this study, haul road quality, speed level, and load profile had a significant effect on vibration exposure. The average of the RMS values were 0.942 and 1.176 m/s 2 for the good and poor road conditions, respectively that are in the high health risk levels. However, there was no significant relationship between the payloads, in the range of 20 to 30 tons, in the RMS values. At speeds higher than 30 km/h, the vibrational health risk was at high level for all conditions. Moreover, there were 93.83% correlation between the measured and simulated RMS values was found in the application of the neural network. This paper helps the mine managers to predict the unsafe conditions and consider the practical approach for the WBV risk reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MHM完成签到,获得积分10
刚刚
真实的亦竹完成签到,获得积分20
刚刚
1秒前
打打应助擅长i采纳,获得10
1秒前
1秒前
wanci应助啊啊啊啊采纳,获得10
1秒前
1秒前
SYLH应助Amberstone1采纳,获得10
2秒前
BrooklynFy发布了新的文献求助10
2秒前
SciGPT应助super采纳,获得10
2秒前
2秒前
3秒前
3秒前
王甜甜完成签到,获得积分10
4秒前
可爱的函函应助乐乐乐采纳,获得10
4秒前
SYLH应助大气糖豆采纳,获得10
4秒前
4秒前
科研通AI2S应助电闪采纳,获得10
5秒前
xavier完成签到,获得积分10
6秒前
酷酷语兰完成签到,获得积分10
7秒前
7秒前
tangt完成签到,获得积分10
7秒前
kedaya应助thx采纳,获得40
7秒前
fusheng发布了新的文献求助10
7秒前
王甜甜发布了新的文献求助10
8秒前
柔弱云朵完成签到,获得积分10
8秒前
9秒前
酷波er应助擅长i采纳,获得10
9秒前
9秒前
10秒前
风中的棒棒糖完成签到,获得积分10
11秒前
火星上含芙完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
bkagyin应助拉格朗日柴犬采纳,获得10
13秒前
14秒前
ljx1995完成签到,获得积分20
14秒前
英俊的铭应助DI采纳,获得10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271