Arousal-Valence Classification from Peripheral Physiological Signals Using Long Short-Term Memory Networks.

唤醒 价(化学) 计算机科学 脑电图 认知心理学 心理学 人工智能 情感配价 刺激(心理学) 召回 神经科学 听力学 低唤醒理论 认知
作者
M Sami Zitouni,Cheul Young Park,Uichin Lee,Leontios Hadjileontiadis,Ahsan Khandoker
标识
DOI:10.1109/embc46164.2021.9630252
摘要

The automated recognition of human emotions plays an important role in developing machines with emotional intelligence. However, most of the affective computing models are based on images, audio, videos and brain signals. There is a lack of prior studies that focus on utilizing only peripheral physiological signals for emotion recognition, which can ideally be implemented in daily life settings using wearables, e.g., smartwatches. Here, an emotion classification method using peripheral physiological signals, obtained by wearable devices that enable continuous monitoring of emotional states, is presented. A Long Short-Term Memory neural network-based classification model is proposed to accurately predict emotions in real-time into binary levels and quadrants of the arousal-valence space. The peripheral sensored data used here were collected from 20 participants, who engaged in a naturalistic debate. Different annotation schemes were adopted and their impact on the classification performance was explored. Evaluation results demonstrate the capability of our method with a measured accuracy of >93% and >89% for binary levels and quad classes, respectively. This paves the way for enhancing the role of wearable devices in emotional state recognition in everyday life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syy完成签到,获得积分10
刚刚
3301发布了新的文献求助10
1秒前
1秒前
长情的不言完成签到,获得积分10
2秒前
2秒前
3秒前
Lucas应助呆萌的太阳采纳,获得10
3秒前
doby完成签到,获得积分10
4秒前
4秒前
研友_菲完成签到,获得积分10
4秒前
4秒前
Leach完成签到 ,获得积分10
5秒前
Kalimba完成签到,获得积分10
5秒前
李辉完成签到,获得积分10
5秒前
超帅的访云完成签到,获得积分10
5秒前
会飞的狗托完成签到,获得积分10
7秒前
greenandblue发布了新的文献求助10
7秒前
琛琛多发文章完成签到,获得积分10
7秒前
花椒鱼完成签到 ,获得积分10
8秒前
SciGPT应助水形物语采纳,获得10
9秒前
9秒前
fangzhang发布了新的文献求助10
9秒前
泥過完成签到 ,获得积分10
10秒前
Lucas应助研友_菲采纳,获得10
10秒前
烟花应助Helium采纳,获得30
10秒前
山丘完成签到,获得积分10
10秒前
鱼雷发布了新的文献求助10
12秒前
12秒前
无奈的从云完成签到,获得积分10
12秒前
我是老大应助虚拟的酸奶采纳,获得10
16秒前
打打应助李辉采纳,获得10
18秒前
18秒前
晨曦完成签到,获得积分10
18秒前
19秒前
炙热尔阳完成签到 ,获得积分10
21秒前
Bamboo完成签到 ,获得积分10
21秒前
21秒前
edenz完成签到,获得积分10
22秒前
22秒前
星辰大海应助啊标采纳,获得10
23秒前
高分求助中
Comparative Anatomy of the Vertebrates 9th 3000
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571929
求助须知:如何正确求助?哪些是违规求助? 3142327
关于积分的说明 9446826
捐赠科研通 2843700
什么是DOI,文献DOI怎么找? 1563001
邀请新用户注册赠送积分活动 731530
科研通“疑难数据库(出版商)”最低求助积分说明 718557