An early model to predict the risk of gestational diabetes mellitus in the absence of blood examination indexes: application in primary health care centres

医学 妊娠期糖尿病 生殖医学 糖尿病 初级保健 初级卫生保健 产科 体格检查 儿科 怀孕 急诊医学 家庭医学 内科学 妊娠期 环境卫生 内分泌学 人口 生物 遗传学
作者
Jingyuan Wang,Bohan Lv,Xiujuan Chen,Yueshuai Pan,Kai Chen,Yan Zhang,Qianqian Li,Lili Wei,Yan Liu
出处
期刊:BMC Pregnancy and Childbirth [BioMed Central]
卷期号:21 (1) 被引量:29
标识
DOI:10.1186/s12884-021-04295-2
摘要

Abstract Background Gestational diabetes mellitus (GDM) is one of the critical causes of adverse perinatal outcomes. A reliable estimate of GDM in early pregnancy would facilitate intervention plans for maternal and infant health care to prevent the risk of adverse perinatal outcomes. This study aims to build an early model to predict GDM in the first trimester for the primary health care centre. Methods Characteristics of pregnant women in the first trimester were collected from eastern China from 2017 to 2019. The univariate analysis was performed using SPSS 23.0 statistical software. Characteristics comparison was applied with Mann-Whitney U test for continuous variables and chi-square test for categorical variables. All analyses were two-sided with p < 0.05 indicating statistical significance. The train_test_split function in Python was used to split the data set into 70% for training and 30% for test. The Random Forest model and Logistic Regression model in Python were applied to model the training data set. The 10-fold cross-validation was used to assess the model’s performance by the areas under the ROC Curve, diagnostic accuracy, sensitivity, and specificity. Results A total of 1,139 pregnant women (186 with GDM) were included in the final data analysis. Significant differences were observed in age ( Z =−2.693, p =0.007), pre-pregnancy BMI ( Z =−5.502, p <0.001), abdomen circumference in the first trimester ( Z =−6.069, p <0.001), gravidity ( Z =−3.210, p =0.001), PCOS (χ 2 =101.024, p <0.001), irregular menstruation (χ 2 =6.578, p =0.010), and family history of diabetes (χ 2 =15.266, p <0.001) between participants with GDM or without GDM. The Random Forest model achieved a higher AUC than the Logistic Regression model (0.777±0.034 vs 0.755±0.032), and had a better discrimination ability of GDM from Non-GDMs (Sensitivity: 0.651±0.087 vs 0.683±0.084, Specificity: 0.813±0.075 vs 0.736±0.087). Conclusions This research developed a simple model to predict the risk of GDM using machine learning algorithm based on pre-pregnancy BMI, abdomen circumference in the first trimester, age, PCOS, gravidity, irregular menstruation, and family history of diabetes. The model was easy in operation, and all predictors were easily obtained in the first trimester in primary health care centres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助胖胖采纳,获得10
刚刚
李爱国应助奇异物质采纳,获得10
刚刚
sun发布了新的文献求助30
6秒前
香辣曲奇发布了新的文献求助10
6秒前
李爱国应助hua采纳,获得10
6秒前
柯夫子完成签到,获得积分10
8秒前
酷波er应助11采纳,获得10
9秒前
若ruofeng应助janice采纳,获得10
10秒前
平安喜乐完成签到,获得积分10
11秒前
球球昂完成签到,获得积分10
11秒前
12秒前
13秒前
16秒前
XJ应助顺利紫山采纳,获得10
16秒前
17秒前
钟美莲发布了新的文献求助10
18秒前
20秒前
21秒前
红宝石设计局完成签到,获得积分10
23秒前
24秒前
沉默完成签到,获得积分10
29秒前
小诗发布了新的文献求助30
29秒前
31秒前
33秒前
烟花应助Hayat采纳,获得10
35秒前
难过大神完成签到,获得积分10
36秒前
cdercder应助Rjy采纳,获得10
36秒前
38秒前
38秒前
彭于晏应助dasfdufos采纳,获得10
39秒前
mo发布了新的文献求助20
39秒前
马凯完成签到,获得积分10
39秒前
39秒前
小诗完成签到,获得积分20
39秒前
Baekhyun完成签到,获得积分10
39秒前
loin发布了新的文献求助30
43秒前
刻苦鼠标发布了新的文献求助20
43秒前
Orange应助科研通管家采纳,获得10
46秒前
元谷雪应助科研通管家采纳,获得10
46秒前
46秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901