Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation

天蓬 树(集合论) 探测器 计算机科学 人工智能 果园 数学 园艺 植物 电信 生物 数学分析
作者
Shenglian Lu,Wenkang Chen,Xin Zhang,Manoj Karkee
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106696-106696 被引量:97
标识
DOI:10.1016/j.compag.2022.106696
摘要

Accurate detection of both immature and mature apples in orchard environments is essential for early crop load management. A near real-time method is proposed in this study for detecting green (early-stage), green–red-mixed (mid-stage; red varieties), or red apples (harvest-stage; red varieties). Both the number of fruits and fruit size were estimated for the entire tree with a single image captured by a low-cost smartphone using two different imaging methods (oblique and panorama modes). An attention mechanism module called the convolutional block attention module (CBAM) was added to the generic YOLOv4 detector to improve the detection accuracy by only focusing on the target canopies. Furthermore, an adaptive layer and larger-scale feature map were included in the modified network structure, enabling it to adapt to various characteristics of fruits and canopies during the entire growing season, such as different fruit colors and sizes, dense-foliage conditions, and severe occlusions. To verify the effectiveness of the proposed method, we compared our improved model, canopy-attention-YOLOv4 (or CA-YOLOv4), with other commonly adopted models available in the literature, such as the original YOLOv4, Faster R-CNN, and single-shot multibox detector (SSD). Two commonly planted apple varieties, “Envy” and “Scifresh”, were used in the study. The results showed that the proposed CA-YOLOv4 detector performed the best among all the algorithms, with up to ∼3% improvement in terms of fruit counting over the original YOLOv4. With the “Envy” variety, fruit detection accuracies were 86.2%, 87.5%, and 92.6% for the early-, mid-, and harvest stages, respectively, whereas the same were 71.0%, 83.6%, and 86.3% for the “Scifresh” variety, which has denser canopy foliage. Both imaging methods proposed in this study only needed one/single shot targeting the entire fruiting tree, which can be highly efficient for real-world applications in crop load management. Finally, CA-YOLOv4 estimated fruit sizes were compared to manual measurements, achieving up to R2 values of 0.68 in fruit height and 0.66 in fruit width estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
出厂价完成签到,获得积分10
1秒前
asdf发布了新的文献求助10
4秒前
研友_Z1eDgZ完成签到,获得积分10
4秒前
董耀文完成签到,获得积分10
5秒前
猪仔5号完成签到 ,获得积分10
6秒前
simon666完成签到,获得积分10
7秒前
王继完成签到,获得积分10
9秒前
Yi完成签到,获得积分10
9秒前
卡片完成签到,获得积分10
9秒前
卡卡西完成签到,获得积分10
12秒前
hahaha6789y完成签到,获得积分10
13秒前
surlamper完成签到,获得积分10
15秒前
maybe完成签到,获得积分10
16秒前
sheep完成签到,获得积分10
16秒前
hahaha2完成签到,获得积分10
16秒前
Mo完成签到,获得积分10
17秒前
秦含光完成签到,获得积分10
18秒前
spider534完成签到,获得积分10
18秒前
BlueKitty完成签到,获得积分10
18秒前
霡霂完成签到,获得积分10
19秒前
量子咸鱼K完成签到,获得积分10
19秒前
徐彬荣完成签到,获得积分10
19秒前
hahaha1完成签到,获得积分10
20秒前
wangzi183完成签到,获得积分10
20秒前
Maestro_S应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
梁栋应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
Adamcssy19完成签到,获得积分10
21秒前
沉淀完成签到 ,获得积分10
22秒前
独特的安波完成签到 ,获得积分10
22秒前
晚灯君完成签到 ,获得积分0
25秒前
真实的采白完成签到 ,获得积分10
26秒前
自由的尔蓉完成签到 ,获得积分10
27秒前
安安最可爱完成签到 ,获得积分10
29秒前
阿俊1212完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498606
求助须知:如何正确求助?哪些是违规求助? 4595782
关于积分的说明 14449763
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481697
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438559