Canopy-attention-YOLOv4-based immature/mature apple fruit detection on dense-foliage tree architectures for early crop load estimation

天蓬 树(集合论) 探测器 计算机科学 人工智能 果园 数学 园艺 植物 数学分析 电信 生物
作者
Shenglian Lu,Wenkang Chen,Xin Zhang,Manoj Karkee
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:193: 106696-106696 被引量:61
标识
DOI:10.1016/j.compag.2022.106696
摘要

Accurate detection of both immature and mature apples in orchard environments is essential for early crop load management. A near real-time method is proposed in this study for detecting green (early-stage), green–red-mixed (mid-stage; red varieties), or red apples (harvest-stage; red varieties). Both the number of fruits and fruit size were estimated for the entire tree with a single image captured by a low-cost smartphone using two different imaging methods (oblique and panorama modes). An attention mechanism module called the convolutional block attention module (CBAM) was added to the generic YOLOv4 detector to improve the detection accuracy by only focusing on the target canopies. Furthermore, an adaptive layer and larger-scale feature map were included in the modified network structure, enabling it to adapt to various characteristics of fruits and canopies during the entire growing season, such as different fruit colors and sizes, dense-foliage conditions, and severe occlusions. To verify the effectiveness of the proposed method, we compared our improved model, canopy-attention-YOLOv4 (or CA-YOLOv4), with other commonly adopted models available in the literature, such as the original YOLOv4, Faster R-CNN, and single-shot multibox detector (SSD). Two commonly planted apple varieties, “Envy” and “Scifresh”, were used in the study. The results showed that the proposed CA-YOLOv4 detector performed the best among all the algorithms, with up to ∼3% improvement in terms of fruit counting over the original YOLOv4. With the “Envy” variety, fruit detection accuracies were 86.2%, 87.5%, and 92.6% for the early-, mid-, and harvest stages, respectively, whereas the same were 71.0%, 83.6%, and 86.3% for the “Scifresh” variety, which has denser canopy foliage. Both imaging methods proposed in this study only needed one/single shot targeting the entire fruiting tree, which can be highly efficient for real-world applications in crop load management. Finally, CA-YOLOv4 estimated fruit sizes were compared to manual measurements, achieving up to R2 values of 0.68 in fruit height and 0.66 in fruit width estimations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助Liam采纳,获得10
1秒前
Willa发布了新的文献求助10
2秒前
Hello应助无端采纳,获得10
5秒前
沉静的八宝粥完成签到,获得积分10
6秒前
6秒前
10秒前
10秒前
小云飘飘发布了新的文献求助10
10秒前
10秒前
tt发布了新的文献求助10
11秒前
12秒前
武雨寒完成签到 ,获得积分10
12秒前
sesame完成签到,获得积分10
13秒前
bfz50完成签到,获得积分10
13秒前
姜宇完成签到,获得积分10
13秒前
小马想毕业完成签到,获得积分10
13秒前
笑点低的白莲完成签到,获得积分10
15秒前
Lx发布了新的文献求助10
15秒前
我是老大应助Willa采纳,获得10
15秒前
SMPs发布了新的文献求助10
16秒前
今天学习了吗完成签到 ,获得积分10
16秒前
帅气的鹏飞完成签到 ,获得积分10
17秒前
sesame发布了新的文献求助10
17秒前
17秒前
17秒前
学术狗发布了新的文献求助10
17秒前
小云飘飘完成签到,获得积分10
18秒前
18秒前
Majician完成签到,获得积分10
18秒前
19秒前
19秒前
DYN完成签到 ,获得积分10
20秒前
成李钰发布了新的文献求助10
21秒前
Connie发布了新的文献求助10
21秒前
22秒前
22秒前
小新完成签到 ,获得积分10
22秒前
呆瓜发布了新的文献求助10
22秒前
小僧发布了新的文献求助10
23秒前
打打应助澜生采纳,获得10
24秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129756
求助须知:如何正确求助?哪些是违规求助? 2780520
关于积分的说明 7748718
捐赠科研通 2435880
什么是DOI,文献DOI怎么找? 1294326
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570