The synergistic effects of MoS2 and reduced graphene oxide on sensing performances for electrochemical chloramphenicol sensor

石墨烯 材料科学 拉曼光谱 电化学 氧化物 电化学气体传感器 X射线光电子能谱 纳米技术 电极 化学工程 扫描电子显微镜 复合材料 化学 光学 物理化学 工程类 冶金 物理
作者
Shang Gao,Zhimin Yang,Yaqing Zhang,Liang Zhao,Yunpeng Xing,Teng Fei,Sen Liu,Tong Zhang
出处
期刊:FlatChem [Elsevier]
卷期号:33: 100364-100364 被引量:25
标识
DOI:10.1016/j.flatc.2022.100364
摘要

The electrochemical sensors for chloramphenicol (CAP) detection have been explored and applied in the field of food safety because of the striking merits of fast detection speed, high sensitivity and easy operation. The effective electrocatalysts possessing excellent catalytic activity for electrochemical reduction of CAP are highly desirable for determination of CAP. Herein, we developed high-performance electrochemical CAP sensor based on MoS2 modified reduced graphene oxide (MoS2-rGO) hybrids, prepared by one-pot hydrothermal synthesis method. The successful deposition of MoS2 onto rGO nanosheets was confirmed by several characterizations, including X-ray diffraction, Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. Most importantly, the sensing performances of electrochemical CAP sensor based on MoS2-rGO hybrids are better than the sensors based on MoS2 as well as rGO, including sensitivity of 4.566 μA·μM−1·cm−2, linear range of 1–55 μM and limit of detection of 0.6 μM. The excellent sensing performances of MoS2-rGO hybrids-based CAP sensor are derived from the synergistic effects of MoS2 and rGO. As expected, rGO serves as conductive linker between electrolyte and electrode increasing electrons transfer rate. Meanwile, the deposition of MoS2 onto rGO leads to the formation of three-dimensional conductive networks further enhanced the surface active sites and electron transferring rate. For example, the MoS2-rGO-3 hybrids display large electrochemical surface area of 0.146 cm2, and low interfacial resistance of 6.2 Ω. The present protocol could be spread on synthesis of functional materials for constructing high-performance electrochemical sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率的初露完成签到,获得积分10
1秒前
小马甲应助帅气白梦采纳,获得10
1秒前
桐桐应助小怪采纳,获得10
2秒前
科研通AI5应助meikoo采纳,获得10
4秒前
4秒前
5秒前
yuji完成签到 ,获得积分10
5秒前
5秒前
田様应助羞涩的怀蝶采纳,获得10
7秒前
奋斗机器猫完成签到 ,获得积分10
7秒前
寒冷新瑶发布了新的文献求助10
8秒前
8秒前
lkk发布了新的文献求助10
8秒前
boo完成签到 ,获得积分10
8秒前
Likz发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
hill完成签到,获得积分10
9秒前
在水一方应助暴躁的问晴采纳,获得10
10秒前
仲了一枪发布了新的文献求助10
10秒前
打打应助见识到了采纳,获得10
10秒前
10秒前
在水一方应助Janus采纳,获得10
11秒前
11秒前
qunqing3发布了新的文献求助10
11秒前
13秒前
swbj发布了新的文献求助10
13秒前
erhgbw发布了新的文献求助30
13秒前
13秒前
銪志青年发布了新的文献求助10
14秒前
时尚的萝发布了新的文献求助10
15秒前
15秒前
16秒前
无花果应助寒冷新瑶采纳,获得10
16秒前
丰泽园完成签到,获得积分10
17秒前
淡淡水云发布了新的文献求助10
17秒前
jrxjzy发布了新的文献求助10
17秒前
wangqing发布了新的文献求助10
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476637
求助须知:如何正确求助?哪些是违规求助? 3068229
关于积分的说明 9107100
捐赠科研通 2759749
什么是DOI,文献DOI怎么找? 1514256
邀请新用户注册赠送积分活动 700121
科研通“疑难数据库(出版商)”最低求助积分说明 699312