亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Best-Selling New Products in a Major Promotion Campaign Through Graph Convolutional Networks

促销 计算机科学 过度拟合 晋升(国际象棋) 体积热力学 销售预测 图形 卷积神经网络 销售管理 运筹学 计量经济学 营销 机器学习 人工神经网络 业务 理论计算机科学 经济 数学 物理 政治 法学 政治学 量子力学
作者
Chaojie Li,Wensen Jiang,Yin Yang,Shirui Pan,Gang Huang,Lijie Guo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 9102-9115 被引量:3
标识
DOI:10.1109/tnnls.2022.3155690
摘要

Many e-commerce platforms, such as AliExpress, run major promotion campaigns regularly. Before such a promotion, it is important to predict potential best sellers and their respective sales volumes so that the platform can arrange their supply chains and logistics accordingly. For items with a sufficiently long sales history, accurate sales forecast can be achieved through the traditional statistical forecasting techniques. Accurately predicting the sales volume of a new item, however, is rather challenging with existing methods; time series models tend to overfit due to the very limited historical sales records of the new item, whereas models that do not utilize historical information often fail to make accurate predictions, due to the lack of strong indicators of sales volume among the item's basic attributes. This article presents the solution deployed at Alibaba in 2019, which had been used in production to prepare for its annual "Double 11" promotion event whose total sales amount exceeded U.S. $ 38 billion in a single day. The main idea of the proposed solution is to predict the sales volume of each new item through its connections with older products with sufficiently long sales history. In other words, our solution considers the cross-selling effects between different products, which has been largely neglected in previous methods. Specifically, the proposed solution first constructs an item graph, in which each new item is connected to relevant older items. Then, a novel multitask graph convolutional neural network (GCN) is trained by a multiobjective optimization-based gradient surgery technique to predict the expected sales volumes of new items. The designs of both the item graph and the GCN exploit the fact that we only need to perform accurate sales forecasts for potential best-selling items in a major promotion, which helps reduce computational overhead. Extensive experiments on both proprietary AliExpress data and a public dataset demonstrate that the proposed solution achieves consistent performance gains compared to existing methods for sales forecast.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三岁完成签到 ,获得积分10
刚刚
刚刚
light111发布了新的文献求助10
1秒前
传统的丹雪完成签到,获得积分10
1秒前
2秒前
3秒前
SIKI发布了新的文献求助10
5秒前
小羊要努力完成签到,获得积分10
6秒前
李同学发布了新的文献求助30
7秒前
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
20秒前
无私的寄灵完成签到 ,获得积分10
20秒前
25秒前
Rita发布了新的文献求助10
26秒前
Lh发布了新的文献求助10
26秒前
乐乐应助超级野狼采纳,获得10
26秒前
大力的图图完成签到,获得积分10
28秒前
危笑完成签到,获得积分10
31秒前
35秒前
yjx完成签到 ,获得积分10
37秒前
孤标傲世完成签到 ,获得积分10
37秒前
冷静新烟完成签到,获得积分10
37秒前
梦璃完成签到 ,获得积分10
38秒前
40秒前
41秒前
Yuki发布了新的文献求助10
42秒前
45秒前
超级野狼发布了新的文献求助10
46秒前
Uluru发布了新的文献求助200
46秒前
Maisie发布了新的文献求助30
46秒前
Yuki完成签到,获得积分10
50秒前
绾妤完成签到 ,获得积分0
50秒前
51秒前
Orange应助李同学采纳,获得10
52秒前
开朗若之完成签到 ,获得积分10
58秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754644
求助须知:如何正确求助?哪些是违规求助? 5488236
关于积分的说明 15380380
捐赠科研通 4893172
什么是DOI,文献DOI怎么找? 2631766
邀请新用户注册赠送积分活动 1579709
关于科研通互助平台的介绍 1535463