Predicting Best-Selling New Products in a Major Promotion Campaign Through Graph Convolutional Networks

促销 计算机科学 过度拟合 晋升(国际象棋) 体积热力学 销售预测 图形 卷积神经网络 销售管理 运筹学 计量经济学 营销 机器学习 人工神经网络 业务 理论计算机科学 经济 数学 量子力学 政治 物理 法学 政治学
作者
Chaojie Li,Wensen Jiang,Yin Yang,Shirui Pan,Gang Huang,Lijie Guo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 9102-9115 被引量:3
标识
DOI:10.1109/tnnls.2022.3155690
摘要

Many e-commerce platforms, such as AliExpress, run major promotion campaigns regularly. Before such a promotion, it is important to predict potential best sellers and their respective sales volumes so that the platform can arrange their supply chains and logistics accordingly. For items with a sufficiently long sales history, accurate sales forecast can be achieved through the traditional statistical forecasting techniques. Accurately predicting the sales volume of a new item, however, is rather challenging with existing methods; time series models tend to overfit due to the very limited historical sales records of the new item, whereas models that do not utilize historical information often fail to make accurate predictions, due to the lack of strong indicators of sales volume among the item's basic attributes. This article presents the solution deployed at Alibaba in 2019, which had been used in production to prepare for its annual "Double 11" promotion event whose total sales amount exceeded U.S. $ 38 billion in a single day. The main idea of the proposed solution is to predict the sales volume of each new item through its connections with older products with sufficiently long sales history. In other words, our solution considers the cross-selling effects between different products, which has been largely neglected in previous methods. Specifically, the proposed solution first constructs an item graph, in which each new item is connected to relevant older items. Then, a novel multitask graph convolutional neural network (GCN) is trained by a multiobjective optimization-based gradient surgery technique to predict the expected sales volumes of new items. The designs of both the item graph and the GCN exploit the fact that we only need to perform accurate sales forecasts for potential best-selling items in a major promotion, which helps reduce computational overhead. Extensive experiments on both proprietary AliExpress data and a public dataset demonstrate that the proposed solution achieves consistent performance gains compared to existing methods for sales forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地球完成签到,获得积分10
1秒前
tttttt应助QinQin采纳,获得10
1秒前
zhu完成签到,获得积分20
2秒前
朱晖发布了新的文献求助10
2秒前
忘忧草发布了新的文献求助10
2秒前
2秒前
平常的胡萝卜完成签到,获得积分10
2秒前
2秒前
旋风乐发布了新的文献求助10
2秒前
li发布了新的文献求助10
3秒前
CodeCraft应助顺顺尼采纳,获得10
3秒前
思睿拜完成签到 ,获得积分10
3秒前
3秒前
诺诺猪完成签到,获得积分10
5秒前
5秒前
5秒前
看你个发布了新的文献求助10
6秒前
于芋菊完成签到,获得积分0
7秒前
梨涡远点完成签到 ,获得积分10
7秒前
Zymiao发布了新的文献求助10
7秒前
7秒前
许蓁蓁完成签到,获得积分20
8秒前
小冰子发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
岁月轮回发布了新的文献求助10
11秒前
11秒前
积极晓兰完成签到,获得积分10
12秒前
丁鹏笑完成签到 ,获得积分0
12秒前
后来发布了新的文献求助10
13秒前
13秒前
LMFY完成签到 ,获得积分10
13秒前
温暖的问候完成签到,获得积分10
13秒前
13秒前
不配.应助秒秒采纳,获得20
14秒前
15秒前
likk发布了新的文献求助10
15秒前
doris发布了新的文献求助30
15秒前
鱼鱼会飞完成签到,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
BIOMIMETIC RESTORATIVE DENTISTRY 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3177852
求助须知:如何正确求助?哪些是违规求助? 2828840
关于积分的说明 7968661
捐赠科研通 2490059
什么是DOI,文献DOI怎么找? 1327390
科研通“疑难数据库(出版商)”最低求助积分说明 635231
版权声明 602888