Predicting Best-Selling New Products in a Major Promotion Campaign Through Graph Convolutional Networks

促销 计算机科学 过度拟合 晋升(国际象棋) 体积热力学 销售预测 图形 卷积神经网络 销售管理 运筹学 计量经济学 营销 机器学习 人工神经网络 业务 理论计算机科学 经济 数学 量子力学 政治 物理 法学 政治学
作者
Chaojie Li,Wensen Jiang,Yin Yang,Shirui Pan,Gang Huang,Lijie Guo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 9102-9115 被引量:3
标识
DOI:10.1109/tnnls.2022.3155690
摘要

Many e-commerce platforms, such as AliExpress, run major promotion campaigns regularly. Before such a promotion, it is important to predict potential best sellers and their respective sales volumes so that the platform can arrange their supply chains and logistics accordingly. For items with a sufficiently long sales history, accurate sales forecast can be achieved through the traditional statistical forecasting techniques. Accurately predicting the sales volume of a new item, however, is rather challenging with existing methods; time series models tend to overfit due to the very limited historical sales records of the new item, whereas models that do not utilize historical information often fail to make accurate predictions, due to the lack of strong indicators of sales volume among the item's basic attributes. This article presents the solution deployed at Alibaba in 2019, which had been used in production to prepare for its annual "Double 11" promotion event whose total sales amount exceeded U.S. $ 38 billion in a single day. The main idea of the proposed solution is to predict the sales volume of each new item through its connections with older products with sufficiently long sales history. In other words, our solution considers the cross-selling effects between different products, which has been largely neglected in previous methods. Specifically, the proposed solution first constructs an item graph, in which each new item is connected to relevant older items. Then, a novel multitask graph convolutional neural network (GCN) is trained by a multiobjective optimization-based gradient surgery technique to predict the expected sales volumes of new items. The designs of both the item graph and the GCN exploit the fact that we only need to perform accurate sales forecasts for potential best-selling items in a major promotion, which helps reduce computational overhead. Extensive experiments on both proprietary AliExpress data and a public dataset demonstrate that the proposed solution achieves consistent performance gains compared to existing methods for sales forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助liutengfei123采纳,获得10
1秒前
我喝白开水完成签到,获得积分10
1秒前
易川完成签到,获得积分10
2秒前
2秒前
纪鹏飞完成签到,获得积分10
2秒前
ty发布了新的文献求助10
2秒前
seven完成签到,获得积分10
2秒前
mawenxing完成签到,获得积分10
3秒前
123123123发布了新的文献求助10
3秒前
呼啦呼啦完成签到,获得积分10
3秒前
3秒前
CipherSage应助kkk采纳,获得10
3秒前
鸣笛应助喂喂采纳,获得10
4秒前
yu001完成签到,获得积分10
4秒前
虚幻盼晴完成签到,获得积分10
5秒前
小郭子发布了新的文献求助10
5秒前
5秒前
晓倩完成签到,获得积分10
5秒前
6秒前
彳亍完成签到,获得积分10
6秒前
cab_rose完成签到,获得积分10
6秒前
LL关注了科研通微信公众号
6秒前
Loooong完成签到,获得积分0
6秒前
waayu完成签到 ,获得积分10
6秒前
Xu完成签到,获得积分10
6秒前
7秒前
7秒前
谢言一完成签到,获得积分10
7秒前
蹦蹦完成签到,获得积分10
7秒前
星点点发布了新的文献求助10
7秒前
Qian完成签到,获得积分10
7秒前
8秒前
小熊完成签到,获得积分10
8秒前
zake完成签到,获得积分10
8秒前
8秒前
sdfwsdfsd完成签到,获得积分10
8秒前
TT2022发布了新的文献求助10
8秒前
烟熏柿子发布了新的文献求助10
8秒前
彭于晏应助于世不凡采纳,获得10
8秒前
岂识浊醪妙理完成签到,获得积分10
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009254
求助须知:如何正确求助?哪些是违规求助? 3549107
关于积分的说明 11300780
捐赠科研通 3283530
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886168
科研通“疑难数据库(出版商)”最低求助积分说明 811267