Predicting Best-Selling New Products in a Major Promotion Campaign Through Graph Convolutional Networks

促销 计算机科学 过度拟合 晋升(国际象棋) 体积热力学 销售预测 图形 卷积神经网络 销售管理 运筹学 计量经济学 营销 机器学习 人工神经网络 业务 理论计算机科学 经济 数学 量子力学 政治 物理 法学 政治学
作者
Chaojie Li,Wensen Jiang,Yin Yang,Shirui Pan,Gang Huang,Lijie Guo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 9102-9115 被引量:3
标识
DOI:10.1109/tnnls.2022.3155690
摘要

Many e-commerce platforms, such as AliExpress, run major promotion campaigns regularly. Before such a promotion, it is important to predict potential best sellers and their respective sales volumes so that the platform can arrange their supply chains and logistics accordingly. For items with a sufficiently long sales history, accurate sales forecast can be achieved through the traditional statistical forecasting techniques. Accurately predicting the sales volume of a new item, however, is rather challenging with existing methods; time series models tend to overfit due to the very limited historical sales records of the new item, whereas models that do not utilize historical information often fail to make accurate predictions, due to the lack of strong indicators of sales volume among the item's basic attributes. This article presents the solution deployed at Alibaba in 2019, which had been used in production to prepare for its annual "Double 11" promotion event whose total sales amount exceeded U.S. $ 38 billion in a single day. The main idea of the proposed solution is to predict the sales volume of each new item through its connections with older products with sufficiently long sales history. In other words, our solution considers the cross-selling effects between different products, which has been largely neglected in previous methods. Specifically, the proposed solution first constructs an item graph, in which each new item is connected to relevant older items. Then, a novel multitask graph convolutional neural network (GCN) is trained by a multiobjective optimization-based gradient surgery technique to predict the expected sales volumes of new items. The designs of both the item graph and the GCN exploit the fact that we only need to perform accurate sales forecasts for potential best-selling items in a major promotion, which helps reduce computational overhead. Extensive experiments on both proprietary AliExpress data and a public dataset demonstrate that the proposed solution achieves consistent performance gains compared to existing methods for sales forecast.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助wz采纳,获得10
2秒前
2秒前
香蕉觅云应助Lucien采纳,获得30
2秒前
2秒前
2秒前
3秒前
Xavier完成签到,获得积分20
3秒前
Criminology34应助海子采纳,获得10
3秒前
4秒前
大白菜完成签到,获得积分10
4秒前
再见一日完成签到,获得积分10
4秒前
4秒前
5秒前
DY完成签到,获得积分0
5秒前
5秒前
ting_jiang完成签到,获得积分10
6秒前
philipa完成签到,获得积分10
6秒前
6秒前
何安发布了新的文献求助10
7秒前
Orange应助松尐采纳,获得10
7秒前
ning完成签到,获得积分10
7秒前
majf发布了新的文献求助10
7秒前
沉默的行云完成签到,获得积分20
8秒前
strongfrog发布了新的文献求助10
8秒前
大模型应助12138采纳,获得10
9秒前
圆子发布了新的文献求助10
10秒前
10秒前
豆本豆发布了新的文献求助10
11秒前
11秒前
lucky完成签到,获得积分10
12秒前
Clara完成签到,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
烂漫铃铛发布了新的文献求助10
14秒前
无花果应助俏皮的冬云采纳,获得20
14秒前
chen完成签到 ,获得积分10
14秒前
花飞飞凡发布了新的文献求助10
14秒前
lu发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836