清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting Best-Selling New Products in a Major Promotion Campaign Through Graph Convolutional Networks

促销 计算机科学 过度拟合 晋升(国际象棋) 体积热力学 销售预测 图形 卷积神经网络 销售管理 运筹学 计量经济学 营销 机器学习 人工神经网络 业务 理论计算机科学 经济 数学 量子力学 政治 物理 法学 政治学
作者
Chaojie Li,Wensen Jiang,Yin Yang,Shirui Pan,Gang Huang,Lijie Guo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 9102-9115 被引量:3
标识
DOI:10.1109/tnnls.2022.3155690
摘要

Many e-commerce platforms, such as AliExpress, run major promotion campaigns regularly. Before such a promotion, it is important to predict potential best sellers and their respective sales volumes so that the platform can arrange their supply chains and logistics accordingly. For items with a sufficiently long sales history, accurate sales forecast can be achieved through the traditional statistical forecasting techniques. Accurately predicting the sales volume of a new item, however, is rather challenging with existing methods; time series models tend to overfit due to the very limited historical sales records of the new item, whereas models that do not utilize historical information often fail to make accurate predictions, due to the lack of strong indicators of sales volume among the item's basic attributes. This article presents the solution deployed at Alibaba in 2019, which had been used in production to prepare for its annual "Double 11" promotion event whose total sales amount exceeded U.S. $ 38 billion in a single day. The main idea of the proposed solution is to predict the sales volume of each new item through its connections with older products with sufficiently long sales history. In other words, our solution considers the cross-selling effects between different products, which has been largely neglected in previous methods. Specifically, the proposed solution first constructs an item graph, in which each new item is connected to relevant older items. Then, a novel multitask graph convolutional neural network (GCN) is trained by a multiobjective optimization-based gradient surgery technique to predict the expected sales volumes of new items. The designs of both the item graph and the GCN exploit the fact that we only need to perform accurate sales forecasts for potential best-selling items in a major promotion, which helps reduce computational overhead. Extensive experiments on both proprietary AliExpress data and a public dataset demonstrate that the proposed solution achieves consistent performance gains compared to existing methods for sales forecast.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴躁的鱼完成签到 ,获得积分10
32秒前
tt完成签到,获得积分10
34秒前
cy0824完成签到 ,获得积分10
44秒前
淡然的莫茗完成签到 ,获得积分10
53秒前
忧郁的火车完成签到,获得积分10
2分钟前
不想看文献完成签到 ,获得积分10
3分钟前
zxx完成签到 ,获得积分0
3分钟前
3分钟前
4分钟前
Lliu发布了新的文献求助10
4分钟前
zpli完成签到 ,获得积分10
5分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
qqq完成签到,获得积分10
5分钟前
6分钟前
1234发布了新的文献求助10
6分钟前
1234完成签到,获得积分20
6分钟前
Lliu完成签到,获得积分10
6分钟前
五木完成签到,获得积分10
7分钟前
在水一方应助稳重的泽洋采纳,获得10
7分钟前
大模型应助科研通管家采纳,获得30
7分钟前
科目三应助Carl采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
Carl发布了新的文献求助10
8分钟前
所所应助稳重的泽洋采纳,获得10
9分钟前
meeteryu完成签到,获得积分10
9分钟前
CHEN完成签到 ,获得积分0
10分钟前
10分钟前
10分钟前
稳重的泽洋完成签到,获得积分10
11分钟前
在逃板砖完成签到 ,获得积分10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
Timelapse应助缥缈以珊采纳,获得20
11分钟前
12分钟前
午后狂睡完成签到 ,获得积分10
12分钟前
Jasper应助大哥我猪呢采纳,获得10
12分钟前
12分钟前
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565086
求助须知:如何正确求助?哪些是违规求助? 4649803
关于积分的说明 14689300
捐赠科研通 4591729
什么是DOI,文献DOI怎么找? 2519358
邀请新用户注册赠送积分活动 1491917
关于科研通互助平台的介绍 1463056