Predicting Best-Selling New Products in a Major Promotion Campaign Through Graph Convolutional Networks

促销 计算机科学 过度拟合 晋升(国际象棋) 体积热力学 销售预测 图形 卷积神经网络 销售管理 运筹学 计量经济学 营销 机器学习 人工神经网络 业务 理论计算机科学 经济 数学 量子力学 政治 物理 法学 政治学
作者
Chaojie Li,Wensen Jiang,Yin Yang,Shirui Pan,Gang Huang,Lijie Guo
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 9102-9115 被引量:3
标识
DOI:10.1109/tnnls.2022.3155690
摘要

Many e-commerce platforms, such as AliExpress, run major promotion campaigns regularly. Before such a promotion, it is important to predict potential best sellers and their respective sales volumes so that the platform can arrange their supply chains and logistics accordingly. For items with a sufficiently long sales history, accurate sales forecast can be achieved through the traditional statistical forecasting techniques. Accurately predicting the sales volume of a new item, however, is rather challenging with existing methods; time series models tend to overfit due to the very limited historical sales records of the new item, whereas models that do not utilize historical information often fail to make accurate predictions, due to the lack of strong indicators of sales volume among the item's basic attributes. This article presents the solution deployed at Alibaba in 2019, which had been used in production to prepare for its annual "Double 11" promotion event whose total sales amount exceeded U.S. $ 38 billion in a single day. The main idea of the proposed solution is to predict the sales volume of each new item through its connections with older products with sufficiently long sales history. In other words, our solution considers the cross-selling effects between different products, which has been largely neglected in previous methods. Specifically, the proposed solution first constructs an item graph, in which each new item is connected to relevant older items. Then, a novel multitask graph convolutional neural network (GCN) is trained by a multiobjective optimization-based gradient surgery technique to predict the expected sales volumes of new items. The designs of both the item graph and the GCN exploit the fact that we only need to perform accurate sales forecasts for potential best-selling items in a major promotion, which helps reduce computational overhead. Extensive experiments on both proprietary AliExpress data and a public dataset demonstrate that the proposed solution achieves consistent performance gains compared to existing methods for sales forecast.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aether发布了新的文献求助10
刚刚
刚刚
liu完成签到,获得积分10
1秒前
sci2025opt完成签到 ,获得积分10
1秒前
2秒前
GRX1110发布了新的文献求助10
4秒前
卡卡完成签到 ,获得积分10
5秒前
Ada发布了新的文献求助10
6秒前
沉默念瑶发布了新的文献求助10
6秒前
6秒前
小小垚发布了新的文献求助10
6秒前
桑榆2完成签到,获得积分10
6秒前
6秒前
思源应助吴啊采纳,获得10
8秒前
8秒前
8秒前
英姑应助虚拟的乐萱采纳,获得10
9秒前
CodeCraft应助HHZ采纳,获得10
11秒前
11秒前
清飞完成签到,获得积分10
12秒前
sevenhill应助拼搏煎蛋采纳,获得10
13秒前
多多发布了新的文献求助10
13秒前
王359发布了新的文献求助10
13秒前
咚咚完成签到,获得积分20
14秒前
许译匀完成签到,获得积分10
14秒前
14秒前
搞怪路灯发布了新的文献求助10
15秒前
研友_LOKXmL完成签到,获得积分10
16秒前
17秒前
桑榆完成签到,获得积分10
18秒前
19秒前
冷静的迎波完成签到 ,获得积分10
20秒前
20秒前
LeoPro完成签到,获得积分20
20秒前
顾矜应助沉默念瑶采纳,获得10
21秒前
buno应助拼搏煎蛋采纳,获得10
22秒前
zzz发布了新的文献求助10
23秒前
小德发布了新的文献求助10
24秒前
ZZZ发布了新的文献求助10
24秒前
脑洞疼应助LeoPro采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605746
求助须知:如何正确求助?哪些是违规求助? 4690350
关于积分的说明 14863110
捐赠科研通 4702499
什么是DOI,文献DOI怎么找? 2542243
邀请新用户注册赠送积分活动 1507853
关于科研通互助平台的介绍 1472142