Superhydrophobic E-textile with an Ag-EGaIn Conductive Layer for Motion Detection and Electromagnetic Interference Shielding

材料科学 电磁屏蔽 织物 复合材料 导电体 电磁干扰 电磁干扰 电导率 纳米技术 光电子学 计算机科学 电信 化学 物理化学
作者
Xinlong Sun,Jun‐Heng Fu,Chao Teng,MingKuan Zhang,TianYing Liu,MingHui Guo,Peng Qin,Fei Zhan,Yan Ren,Hongbin Zhao,Lei Wang,Jing Liu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (29): 33650-33661 被引量:27
标识
DOI:10.1021/acsami.2c09554
摘要

As as emerging innovation, electronic textiles have shown promising potential in health monitoring, energy harvesting, temperature regulation, and human–computer interactions. To access broader application scenarios, numerous e-textiles have been designed with a superhydrophobic surface to steer clear of interference from humidity or chemical decay. Nevertheless, even the cutting-edge electronic textiles (e-textiles) still have difficulty in realizing superior conductivity and satisfactory water repellency simultaneously. Herein, a facile and efficient approach to integrate a hierarchical elastic e-textile is proposed by electroless silver plating on GaIn alloy liquid metal coated textiles. The continuous uneven surface of AgNPs and deposition of FAS-17 endow the textile with exceptional and robust superhydrophobic performance, in which the conductivity and the contact angle of the as-made textile could reach 2145 ± 122 S/cm and 161.5 ± 2.1°, respectively. On the basis of such excellent conductivity, the electromagnetic interference (EMI) shielding function is excavated and the average shielding efficiency (SE) reaches about 87.56 dB within frequencies of 8.2–12.4 GHz. Furthermore, due to its high elasticity and low modulus, the textile can serve as a wearable strain sensor for motion detection, health monitoring, and underwater message transmission. This work provides a novel route to fabricate high-performance hydrophobic e-textiles, in which the encapsulation strategy could be referenced for the further development of conductive textiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
隐形曼青应助柠檬01210采纳,获得10
1秒前
2秒前
3秒前
3秒前
洁净的钢笔完成签到,获得积分10
5秒前
5秒前
6秒前
2333发布了新的文献求助10
6秒前
6秒前
8秒前
深情安青应助yuanl采纳,获得10
9秒前
忐忑的万声完成签到,获得积分10
9秒前
SP-123456发布了新的文献求助10
9秒前
Orange应助lrl采纳,获得10
9秒前
jwb711发布了新的文献求助10
11秒前
13秒前
王欣宇发布了新的文献求助10
13秒前
典雅嫣发布了新的文献求助10
14秒前
小王关注了科研通微信公众号
14秒前
15秒前
朱滴滴完成签到,获得积分10
15秒前
16秒前
16秒前
Orange应助疯狂肉夹馍采纳,获得10
17秒前
18秒前
Lucas应助lee采纳,获得10
18秒前
yuanyuan完成签到,获得积分10
19秒前
学术共进发布了新的文献求助10
19秒前
19秒前
Bin完成签到,获得积分20
19秒前
20秒前
lrl完成签到,获得积分10
20秒前
20秒前
21秒前
跳跃富发布了新的文献求助10
22秒前
红红火火恍恍惚惚完成签到 ,获得积分10
22秒前
yuanyuan发布了新的文献求助10
24秒前
SCT发布了新的文献求助10
24秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463248
求助须知:如何正确求助?哪些是违规求助? 3056670
关于积分的说明 9053304
捐赠科研通 2746544
什么是DOI,文献DOI怎么找? 1507004
科研通“疑难数据库(出版商)”最低求助积分说明 696248
邀请新用户注册赠送积分活动 695849