A novel methodology for human thermal comfort decoding via physiological signals measurement and analysis

解码方法 热舒适性 皮肤温度 可穿戴计算机 心率变异性 热感觉 计算机科学 模拟 信号(编程语言) 遥测 人工智能 工程类 电信 心率 医学 生物医学工程 嵌入式系统 程序设计语言 物理 放射科 热力学 血压
作者
Silvia Angela Mansi,Ilaria Pigliautile,Marco Arnesano,Anna Laura Pisello
出处
期刊:Building and Environment [Elsevier]
卷期号:222: 109385-109385 被引量:29
标识
DOI:10.1016/j.buildenv.2022.109385
摘要

Personal comfort models (PCM) represent the most promising paradigm for human-centric thermal comfort in buildings. Several data sources can be used to generate a PCM: environmental data, physiological data, occupants' response. Advances in wearable sensing suggest that the use of physiological data for real time comfort measurement can be the start-up of the next generation of building design and operation with PCMs. However, proof of evidence about the adoption of non-invasive but accurate measurement methods and about correlations between physiological features and thermal sensation, are still required. This study presents the results from a large original experimental campaign aiming at human thermal comfort decoding via physiological signal. Two non-invasive wearables were used to simultaneously measure four key physiological signals (electroencephalography (EEG), Heart Rate Variability (HRV), electrodermal activity (EDA) and skin temperature (ST) on 52 subjects exposed to three different thermal conditions (namely cold, warm, and neutral) in a controlled environment. Data acquired from 219 tests were therefore analysed to determine the statistical importance of physiological features. Results showed that cold and warm thermal sensations can be uniquely identified by each physiological signal; while neutral sensation is the less distinguishable. More specifically, statistical differences (p-value <0.01) between cold and warm conditions were detected for the first time among EEGs features (Beta TP10, Gamma TP10 relative alpha TP9), time- and frequency-domain features of HRV, EDA tonic component and mean ST. Experimental results finally demonstrated that physiological measurements can identify specific thermal sensation, of crucial importance for the most advanced PCMs and for disclosing novel energy saving opportunities, accounting for people's diversities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得50
刚刚
量子星尘发布了新的文献求助10
刚刚
小二郎应助Narcissus采纳,获得10
刚刚
寒冷的小熊猫完成签到,获得积分10
1秒前
2秒前
华仔应助苗苗会喵喵采纳,获得10
3秒前
5秒前
wayne完成签到,获得积分10
7秒前
zcydbttj2011完成签到 ,获得积分10
11秒前
limo完成签到 ,获得积分10
11秒前
ying完成签到,获得积分10
13秒前
析木完成签到,获得积分10
13秒前
14秒前
olivia完成签到,获得积分10
15秒前
无止完成签到,获得积分10
16秒前
千里毅完成签到,获得积分10
16秒前
科研通AI6应助keyan采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
dddd发布了新的文献求助10
18秒前
18秒前
19秒前
云止发布了新的文献求助10
19秒前
SciGPT应助不知采纳,获得10
19秒前
李德胜完成签到,获得积分10
20秒前
娜娜发布了新的文献求助10
20秒前
23秒前
23秒前
li完成签到,获得积分10
24秒前
小满发布了新的文献求助30
24秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
26秒前
27秒前
GUO完成签到,获得积分10
27秒前
li发布了新的文献求助10
27秒前
青蛙的第二滴口水完成签到,获得积分10
28秒前
28秒前
29秒前
芋圆发布了新的文献求助10
30秒前
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060