Novel nested patch-based feature extraction model for automated Parkinson's Disease symptom classification using MRI images

模式识别(心理学) 支持向量机 人工智能 定向梯度直方图 特征提取 计算机科学 棱锥(几何) 特征选择 特征(语言学) 直方图 多数决原则 交叉验证 特征向量 上下文图像分类 数学 图像(数学) 语言学 哲学 几何学
作者
Ela Kaplan,Erman Altunisik,Yasemin Ekmekyapar Firat,Prabal Datta Barua,Sengul Dogan,Mehmet Baygin,Fahrettin Burak Demir,Turker Tuncer,Elizabeth E. Palmer,Ru San Tan,Ping Yu,Jeffrey Soar,Hamido Fujita,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:224: 107030-107030 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107030
摘要

• Three MRI datasets were collected to detect PD symptoms. • Nested patch division was presented. • A hand-modeled classification architecture was proposed. • Our architecture yielded over 98.50% classification accuracies for all cases. • Our framework outperformed. Parkinson's disease (PD) is a common neurological disorder with variable clinical manifestations and magnetic resonance imaging (MRI) findings. We propose a handcrafted image classification model that can accurately (i) classify different PD stages, (ii) detect comorbid dementia, and (iii) discriminate PD-related motor symptoms. Selected image datasets from three PD studies were used to develop the classification model. Our proposed novel automated system was developed in four phases: (i) texture features are extracted from the non-fixed size patches. In the feature extraction phase, a pyramid histogram-oriented gradient (PHOG) image descriptor is used. (ii) In the feature selection phase, four feature selectors: neighborhood component analysis (NCA), Chi2, minimum redundancy maximum relevancy (mRMR), and ReliefF are used to generate four feature vectors. (iii) Two classifiers: k-nearest neighbor (kNN) and support vector machine (SVM) are used in the classification step. A ten-fold cross-validation technique is used to validate the results. (iv) Eight predicted vectors are generated using four selected feature vectors and two classifiers. Finally, iterative majority voting (IMV) is used to attain general classification results. Therefore, this model is named nested patch-PHOG-multiple feature selectors and multiple classifiers-IMV (NP-PHOG-MFSMCIMV). Our presented NP-PHOG-MFSMCIMV model achieved 99.22, 98.70, and 99.53% accuracies for the collected PD stages, PD dementia, and PD symptoms classification datasets, respectively. The obtained accuracies (over 98% for all states) demonstrated the performance of developed NP-PHOG-MFSMCIMV model in automated PD state classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小翁完成签到,获得积分10
刚刚
李小麦发布了新的文献求助10
刚刚
hfhfhf完成签到,获得积分10
1秒前
1秒前
灰灰发布了新的文献求助10
2秒前
奇凌发布了新的文献求助10
2秒前
面包怪怪完成签到,获得积分10
2秒前
汉堡包应助Vincy采纳,获得10
2秒前
2秒前
3秒前
hhh发布了新的文献求助10
3秒前
大模型应助Maestro_S采纳,获得10
4秒前
4秒前
4秒前
Dr_HuangSp完成签到,获得积分10
4秒前
5秒前
鲤鱼怀绿发布了新的文献求助10
5秒前
FashionBoy应助huqin采纳,获得10
6秒前
面包怪怪发布了新的文献求助10
6秒前
奇凌完成签到,获得积分10
6秒前
最棒的宝宝完成签到,获得积分10
7秒前
8秒前
9秒前
aluo发布了新的文献求助10
9秒前
天真茗发布了新的文献求助10
9秒前
共享精神应助林一采纳,获得10
10秒前
左左发布了新的文献求助10
10秒前
11秒前
英姑应助火锅采纳,获得10
11秒前
12秒前
搜集达人应助www采纳,获得10
13秒前
18183389686完成签到 ,获得积分10
13秒前
牛牛牛应助Zymiao采纳,获得10
13秒前
14秒前
系统提示完成签到,获得积分10
14秒前
犹豫大树发布了新的文献求助10
15秒前
科目三应助淡然的夜柳采纳,获得10
15秒前
liuguang完成签到,获得积分10
15秒前
CR7应助斯文的秋白采纳,获得20
16秒前
李庚龙发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958843
求助须知:如何正确求助?哪些是违规求助? 3505092
关于积分的说明 11122284
捐赠科研通 3236543
什么是DOI,文献DOI怎么找? 1788854
邀请新用户注册赠送积分活动 871424
科研通“疑难数据库(出版商)”最低求助积分说明 802788