Novel nested patch-based feature extraction model for automated Parkinson's Disease symptom classification using MRI images

模式识别(心理学) 支持向量机 人工智能 定向梯度直方图 特征提取 计算机科学 棱锥(几何) 特征选择 特征(语言学) 直方图 多数决原则 交叉验证 特征向量 上下文图像分类 数学 图像(数学) 语言学 哲学 几何学
作者
Ela Kaplan,Erman Altunisik,Yasemin Ekmekyapar Firat,Prabal Datta Barua,Sengul Dogan,Mehmet Baygin,Fahrettin Burak Demir,Turker Tuncer,Elizabeth E. Palmer,Ru San Tan,Ping Yu,Jeffrey Soar,Hamido Fujita,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:224: 107030-107030 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107030
摘要

• Three MRI datasets were collected to detect PD symptoms. • Nested patch division was presented. • A hand-modeled classification architecture was proposed. • Our architecture yielded over 98.50% classification accuracies for all cases. • Our framework outperformed. Parkinson's disease (PD) is a common neurological disorder with variable clinical manifestations and magnetic resonance imaging (MRI) findings. We propose a handcrafted image classification model that can accurately (i) classify different PD stages, (ii) detect comorbid dementia, and (iii) discriminate PD-related motor symptoms. Selected image datasets from three PD studies were used to develop the classification model. Our proposed novel automated system was developed in four phases: (i) texture features are extracted from the non-fixed size patches. In the feature extraction phase, a pyramid histogram-oriented gradient (PHOG) image descriptor is used. (ii) In the feature selection phase, four feature selectors: neighborhood component analysis (NCA), Chi2, minimum redundancy maximum relevancy (mRMR), and ReliefF are used to generate four feature vectors. (iii) Two classifiers: k-nearest neighbor (kNN) and support vector machine (SVM) are used in the classification step. A ten-fold cross-validation technique is used to validate the results. (iv) Eight predicted vectors are generated using four selected feature vectors and two classifiers. Finally, iterative majority voting (IMV) is used to attain general classification results. Therefore, this model is named nested patch-PHOG-multiple feature selectors and multiple classifiers-IMV (NP-PHOG-MFSMCIMV). Our presented NP-PHOG-MFSMCIMV model achieved 99.22, 98.70, and 99.53% accuracies for the collected PD stages, PD dementia, and PD symptoms classification datasets, respectively. The obtained accuracies (over 98% for all states) demonstrated the performance of developed NP-PHOG-MFSMCIMV model in automated PD state classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私的黄豆完成签到 ,获得积分10
刚刚
刚刚
111发布了新的文献求助10
1秒前
3秒前
你好完成签到 ,获得积分0
3秒前
3秒前
3秒前
bkagyin应助落落采纳,获得10
4秒前
998完成签到,获得积分10
4秒前
4秒前
柯北发布了新的文献求助10
5秒前
5秒前
若枫完成签到,获得积分10
5秒前
xuxin完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
峒tt发布了新的文献求助10
7秒前
CCrain完成签到 ,获得积分10
7秒前
cencen发布了新的文献求助10
8秒前
8秒前
汉堡关注了科研通微信公众号
8秒前
雨中尘埃发布了新的文献求助10
9秒前
朱珏虹完成签到,获得积分10
11秒前
11秒前
12秒前
勤恳问薇完成签到 ,获得积分10
12秒前
14秒前
昏睡的半莲完成签到,获得积分10
15秒前
姜萌萌发布了新的文献求助10
16秒前
19秒前
韩小柒完成签到,获得积分20
22秒前
22秒前
24秒前
汉堡发布了新的文献求助10
24秒前
YYH完成签到,获得积分10
24秒前
24秒前
飞快的寻云完成签到 ,获得积分10
25秒前
26秒前
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206753
求助须知:如何正确求助?哪些是违规求助? 4385036
关于积分的说明 13655562
捐赠科研通 4243437
什么是DOI,文献DOI怎么找? 2328116
邀请新用户注册赠送积分活动 1325792
关于科研通互助平台的介绍 1277955