Novel nested patch-based feature extraction model for automated Parkinson's Disease symptom classification using MRI images

模式识别(心理学) 支持向量机 人工智能 定向梯度直方图 特征提取 计算机科学 棱锥(几何) 特征选择 特征(语言学) 直方图 多数决原则 交叉验证 特征向量 上下文图像分类 数学 图像(数学) 语言学 哲学 几何学
作者
Ela Kaplan,Erman Altunisik,Yasemin Ekmekyapar Firat,Prabal Datta Barua,Sengul Dogan,Mehmet Baygin,Fahrettin Burak Demir,Turker Tuncer,Elizabeth E. Palmer,Ru San Tan,Ping Yu,Jeffrey Soar,Hamido Fujita,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:224: 107030-107030 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107030
摘要

• Three MRI datasets were collected to detect PD symptoms. • Nested patch division was presented. • A hand-modeled classification architecture was proposed. • Our architecture yielded over 98.50% classification accuracies for all cases. • Our framework outperformed. Parkinson's disease (PD) is a common neurological disorder with variable clinical manifestations and magnetic resonance imaging (MRI) findings. We propose a handcrafted image classification model that can accurately (i) classify different PD stages, (ii) detect comorbid dementia, and (iii) discriminate PD-related motor symptoms. Selected image datasets from three PD studies were used to develop the classification model. Our proposed novel automated system was developed in four phases: (i) texture features are extracted from the non-fixed size patches. In the feature extraction phase, a pyramid histogram-oriented gradient (PHOG) image descriptor is used. (ii) In the feature selection phase, four feature selectors: neighborhood component analysis (NCA), Chi2, minimum redundancy maximum relevancy (mRMR), and ReliefF are used to generate four feature vectors. (iii) Two classifiers: k-nearest neighbor (kNN) and support vector machine (SVM) are used in the classification step. A ten-fold cross-validation technique is used to validate the results. (iv) Eight predicted vectors are generated using four selected feature vectors and two classifiers. Finally, iterative majority voting (IMV) is used to attain general classification results. Therefore, this model is named nested patch-PHOG-multiple feature selectors and multiple classifiers-IMV (NP-PHOG-MFSMCIMV). Our presented NP-PHOG-MFSMCIMV model achieved 99.22, 98.70, and 99.53% accuracies for the collected PD stages, PD dementia, and PD symptoms classification datasets, respectively. The obtained accuracies (over 98% for all states) demonstrated the performance of developed NP-PHOG-MFSMCIMV model in automated PD state classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobaye完成签到,获得积分10
刚刚
大壮发布了新的文献求助10
1秒前
guo发布了新的文献求助10
2秒前
nihao发布了新的文献求助10
2秒前
SRsora发布了新的文献求助10
2秒前
小二郎应助等待的鱼采纳,获得10
3秒前
pine发布了新的文献求助10
4秒前
浮游应助HTT采纳,获得10
4秒前
5秒前
7秒前
爆米花应助15348547697采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
10秒前
11秒前
深度精分患者完成签到,获得积分10
12秒前
12秒前
难过安白发布了新的文献求助10
12秒前
歪咪发布了新的文献求助10
12秒前
wanci应助儒雅鸡采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
汉堡包应助riverflowing采纳,获得10
14秒前
14秒前
14秒前
14秒前
15秒前
上官若男应助发sci的女人采纳,获得30
15秒前
美好斓发布了新的文献求助50
15秒前
polite发布了新的文献求助10
16秒前
红豆面包发布了新的文献求助10
16秒前
充电宝应助积极的凌波采纳,获得10
18秒前
hewd3发布了新的文献求助10
18秒前
XiaoXiao发布了新的文献求助20
18秒前
kiki发布了新的文献求助30
19秒前
江江jiang完成签到 ,获得积分10
22秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886324
求助须知:如何正确求助?哪些是违规求助? 4171259
关于积分的说明 12944161
捐赠科研通 3931774
什么是DOI,文献DOI怎么找? 2157191
邀请新用户注册赠送积分活动 1175636
关于科研通互助平台的介绍 1080152