A development of a graph‐based ensemble machine learning model for skin sensitization hazard and potency assessment

计算机科学 机器学习 人工智能 敏化 试验装置 集成学习 皮肤致敏 生物信息学 效力 特征(语言学) 化学 医学 基因 哲学 体外 免疫学 生物化学 语言学
作者
Byoungjun Jeon,Min Hyuk Lim,Tae Hyun Choi,Byeong‐Cheol Kang,Sungwan Kim
出处
期刊:Journal of Applied Toxicology [Wiley]
卷期号:42 (11): 1832-1842 被引量:5
标识
DOI:10.1002/jat.4361
摘要

Abstract Many defined approaches (DAs) for skin sensitization assessment based on the adverse outcome pathway (AOP) have been developed to replace animal testing because the European Union has banned animal testing for cosmetic ingredients. Several DAs have demonstrated that machine learning models are beneficial. In this study, we have developed an ensemble prediction model utilizing the graph convolutional network (GCN) and machine learning approach to assess skin sensitization. The model integrates in silico parameters and data from alternatives to animal testing of well‐defined AOP to improve DA predictivity. Multiple ensemble models were created using the probability produced by the GCN with six physicochemical properties, direct peptide reactivity assay, KeratinoSens™, and human cell line activation test (h‐CLAT), using a multilayer perceptron approach. Models were evaluated by predicting the testing set's human hazard class and three potency classes (strong, weak, and non‐sensitizer). When the GCN feature was used, 11 models out of 16 candidates showed the same or improved accuracy in the testing set. The ensemble model with the feature set of GCN, KeratinoSens™, and h‐CLAT produced the best results with an accuracy of 88% for assessing human hazards. The best three‐class potency model was created with the feature set of GCN and all three assays, resulting in 64% accuracy. These results from the ensemble approach indicate that the addition of the GCN feature could provide an improved predictivity of skin sensitization hazard and potency assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薰硝壤应助小徐医生采纳,获得30
刚刚
2秒前
CWNU_HAN应助彪行天下采纳,获得30
4秒前
科研通AI2S应助千九采纳,获得10
5秒前
s33发布了新的文献求助10
6秒前
7秒前
友好擎发布了新的文献求助30
7秒前
桃桃淘发布了新的文献求助10
8秒前
250完成签到,获得积分10
9秒前
LYDZ1发布了新的文献求助10
10秒前
10秒前
finger完成签到,获得积分10
12秒前
隐形曼青应助sun采纳,获得10
13秒前
14秒前
熹微发布了新的文献求助10
16秒前
sunnnn完成签到,获得积分10
16秒前
zm发布了新的文献求助10
17秒前
21秒前
23秒前
25秒前
耍酷依玉完成签到,获得积分20
25秒前
CWNU_HAN应助彪行天下采纳,获得30
26秒前
潘宋发布了新的文献求助10
28秒前
爆米花应助hh采纳,获得10
28秒前
sun发布了新的文献求助10
29秒前
汉堡包应助危机的麦片采纳,获得10
30秒前
34秒前
35秒前
36秒前
qiuqiu完成签到,获得积分10
36秒前
36秒前
科研糊涂神完成签到,获得积分10
37秒前
adi关注了科研通微信公众号
37秒前
bane.发布了新的文献求助10
37秒前
想s发布了新的文献求助10
38秒前
柳梦完成签到 ,获得积分10
38秒前
BLDYT发布了新的文献求助10
39秒前
41秒前
41秒前
guo发布了新的文献求助10
42秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3061946
求助须知:如何正确求助?哪些是违规求助? 2716957
关于积分的说明 7452269
捐赠科研通 2362976
什么是DOI,文献DOI怎么找? 1252494
科研通“疑难数据库(出版商)”最低求助积分说明 608042
版权声明 596551