Integrating Multi-Label Contrastive Learning With Dual Adversarial Graph Neural Networks for Cross-Modal Retrieval

计算机科学 人工智能 判别式 机器学习 特征学习 相似性(几何) 图形 模式识别(心理学) 语义学(计算机科学) 代表(政治) 理论计算机科学 图像(数学) 政治 政治学 法学 程序设计语言
作者
Shengsheng Qian,Dizhan Xue,Quan Fang,Changsheng Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18 被引量:26
标识
DOI:10.1109/tpami.2022.3188547
摘要

With the growing amount of multimodal data, cross-modal retrieval has attracted more and more attention and become a hot research topic. To date, most of the existing techniques mainly convert multimodal data into a common representation space where similarities in semantics between samples can be easily measured across multiple modalities. However, these approaches may suffer from the following limitations: 1) They overcome the modality gap by introducing loss in the common representation space, which may not be sufficient to eliminate the heterogeneity of various modalities; 2) They treat labels as independent entities and ignore label relationships, which is not conducive to establishing semantic connections across multimodal data; 3) They ignore the non-binary values of label similarity in multi-label scenarios, which may lead to inefficient alignment of representation similarity with label similarity. To tackle these problems, in this article, we propose two models to learn discriminative and modality-invariant representations for cross-modal retrieval. First, the dual generative adversarial networks are built to project multimodal data into a common representation space. Second, to model label relation dependencies and develop inter-dependent classifiers, we employ multi-hop graph neural networks (consisting of Probabilistic GNN and Iterative GNN), where the layer aggregation mechanism is suggested for using propagation information of various hops. Third, we propose a novel soft multi-label contrastive loss for cross-modal retrieval, with the soft positive sampling probability, which can align the representation similarity and the label similarity. Additionally, to adapt to incomplete-modal learning, which can have wider applications, we propose a modal reconstruction mechanism to generate missing features. Extensive experiments on three widely used benchmark datasets, i.e., NUS-WIDE, MIRFlickr, and MS-COCO, show the superiority of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实谷蓝发布了新的文献求助10
1秒前
木悠发布了新的文献求助10
1秒前
向晚生烟完成签到,获得积分10
2秒前
考虑考虑发布了新的文献求助10
3秒前
小景完成签到,获得积分10
3秒前
3秒前
wjj发布了新的文献求助10
3秒前
汉堡包应助淡定的半梦采纳,获得10
4秒前
脑洞疼应助一所悬命采纳,获得10
4秒前
甘乐完成签到,获得积分10
5秒前
6秒前
6秒前
luyuhao3完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
BareBear应助甜蜜的傲蕾采纳,获得10
8秒前
11完成签到,获得积分10
9秒前
Laughter完成签到,获得积分10
9秒前
9秒前
情怀应助小淇采纳,获得10
10秒前
10秒前
钙片儿完成签到,获得积分10
11秒前
11秒前
11发布了新的文献求助10
11秒前
kinlin应助超帅无色采纳,获得10
11秒前
Laughter发布了新的文献求助10
12秒前
百里如雪完成签到,获得积分10
12秒前
12秒前
酷酷宛发布了新的文献求助10
12秒前
乙醇发布了新的文献求助10
13秒前
Phyllis发布了新的文献求助10
13秒前
00000发布了新的文献求助10
13秒前
Jolene完成签到 ,获得积分10
14秒前
高巧德芙完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
14秒前
zdz发布了新的文献求助10
15秒前
执着的岂愈完成签到,获得积分10
15秒前
harvey1989发布了新的文献求助10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4017023
求助须知:如何正确求助?哪些是违规求助? 3557119
关于积分的说明 11323948
捐赠科研通 3289980
什么是DOI,文献DOI怎么找? 1812637
邀请新用户注册赠送积分活动 888165
科研通“疑难数据库(出版商)”最低求助积分说明 812158