亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Review and prospect of data-driven techniques for load forecasting in integrated energy systems

计算机科学 电力系统 可再生能源 鉴定(生物学) 持续性 能量(信号处理) 运筹学 风险分析(工程) 工业工程 工程类 功率(物理) 医学 统计 物理 植物 生态学 数学 量子力学 电气工程 生物
作者
Jizhong Zhu,Hanjiang Dong,Weiye Zheng,Shenglin Li,Yanting Huang,Lei Xi
出处
期刊:Applied Energy [Elsevier]
卷期号:321: 119269-119269 被引量:122
标识
DOI:10.1016/j.apenergy.2022.119269
摘要

With synergies among multiple energy sectors, integrated energy systems (IESs) have been recognized lately as an effective approach to accommodate large-scale renewables and achieve environmental sustainability. The core of IES operation is to keep energy balance between supply and demand, where accurate load forecasting serves as one of the most crucial cornerstones. Recent advances in data-driven techniques have spawned a whole new branch of solution for load forecasting in IESs, which urges the need for a timely review accordingly. First, this overview reveals the uniqueness of the IES load forecasting problem compared with the conventional problem in electric power systems. The influential factors are much more complicated and volatile, while multivariate load series are forecasted simultaneously to address the coupling among different energy sectors. This uniqueness has contributed to increasing works and early breakthroughs for the IES load forecasting problem. Then, following the application and implementation procedures, essential issues of data-driven techniques in current works are reviewed with respect to the IES settings such as the variable decision, data preparation, feature engineering, model identification, and augmentation strategy adoption. The procedures are summarized according to current works and have covered all of the effective solutions for accurate forecasts. Finally, future trends and prospects of advanced topics therein are identified beyond current breakthroughs. Compatible with the distributed structure of IESs, federated learning is a promising solution for coordinated load forecasting among diverse energy sectors. On the other hand, automated machine learning builds deep learning and other data-driven models more intelligently to extremely improve load forecasting in complex IESs. The limited data issue in IESs also warrants further research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
交钱上班发布了新的文献求助10
37秒前
2分钟前
姚老表完成签到,获得积分10
2分钟前
2分钟前
香蕉觅云应助端庄的饼干采纳,获得10
2分钟前
端庄的饼干完成签到,获得积分20
2分钟前
科研通AI2S应助spark810采纳,获得10
5分钟前
6分钟前
7分钟前
凭风听纸鸢完成签到,获得积分10
8分钟前
mengliu完成签到,获得积分10
8分钟前
kuoping完成签到,获得积分10
8分钟前
无花果应助科研通管家采纳,获得10
9分钟前
ling361完成签到,获得积分10
9分钟前
早晚完成签到 ,获得积分10
9分钟前
Mipe完成签到,获得积分10
10分钟前
Demi_Ming完成签到,获得积分10
10分钟前
10分钟前
10分钟前
科研通AI2S应助希勤采纳,获得30
10分钟前
材料虎完成签到,获得积分10
11分钟前
慕青应助材料虎采纳,获得10
11分钟前
11分钟前
材料虎发布了新的文献求助10
11分钟前
xwx发布了新的文献求助10
11分钟前
宽宽完成签到,获得积分10
11分钟前
权灵萱完成签到,获得积分10
12分钟前
天边的云彩完成签到 ,获得积分10
12分钟前
一剑白发布了新的文献求助10
12分钟前
13分钟前
13分钟前
13分钟前
852应助科研通管家采纳,获得10
13分钟前
13分钟前
13分钟前
昼夜发布了新的文献求助10
13分钟前
星辰大海应助lensray采纳,获得10
14分钟前
15分钟前
15分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133970
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768684
捐赠科研通 2440205
什么是DOI,文献DOI怎么找? 1297295
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791