已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Review and prospect of data-driven techniques for load forecasting in integrated energy systems

计算机科学 电力系统 可再生能源 鉴定(生物学) 持续性 能量(信号处理) 运筹学 风险分析(工程) 工业工程 工程类 功率(物理) 医学 统计 物理 植物 生态学 数学 量子力学 电气工程 生物
作者
Jizhong Zhu,Hanjiang Dong,Weiye Zheng,Shenglin Li,Yanting Huang,Lei Xi
出处
期刊:Applied Energy [Elsevier]
卷期号:321: 119269-119269 被引量:182
标识
DOI:10.1016/j.apenergy.2022.119269
摘要

With synergies among multiple energy sectors, integrated energy systems (IESs) have been recognized lately as an effective approach to accommodate large-scale renewables and achieve environmental sustainability. The core of IES operation is to keep energy balance between supply and demand, where accurate load forecasting serves as one of the most crucial cornerstones. Recent advances in data-driven techniques have spawned a whole new branch of solution for load forecasting in IESs, which urges the need for a timely review accordingly. First, this overview reveals the uniqueness of the IES load forecasting problem compared with the conventional problem in electric power systems. The influential factors are much more complicated and volatile, while multivariate load series are forecasted simultaneously to address the coupling among different energy sectors. This uniqueness has contributed to increasing works and early breakthroughs for the IES load forecasting problem. Then, following the application and implementation procedures, essential issues of data-driven techniques in current works are reviewed with respect to the IES settings such as the variable decision, data preparation, feature engineering, model identification, and augmentation strategy adoption. The procedures are summarized according to current works and have covered all of the effective solutions for accurate forecasts. Finally, future trends and prospects of advanced topics therein are identified beyond current breakthroughs. Compatible with the distributed structure of IESs, federated learning is a promising solution for coordinated load forecasting among diverse energy sectors. On the other hand, automated machine learning builds deep learning and other data-driven models more intelligently to extremely improve load forecasting in complex IESs. The limited data issue in IESs also warrants further research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy发布了新的文献求助10
刚刚
小蘑菇应助张志超采纳,获得10
1秒前
无语的巨人完成签到 ,获得积分10
1秒前
Tonson完成签到,获得积分10
2秒前
楚楚完成签到 ,获得积分10
3秒前
走啊走完成签到,获得积分10
4秒前
5秒前
懒得理完成签到 ,获得积分10
6秒前
6秒前
荔枝完成签到,获得积分10
7秒前
Ripples完成签到,获得积分10
7秒前
呜哩哇啦发布了新的文献求助10
9秒前
盐焗小崔发布了新的文献求助10
10秒前
浮浮世世发布了新的文献求助10
14秒前
舒心小海豚完成签到 ,获得积分10
15秒前
18秒前
kdjc完成签到 ,获得积分10
19秒前
Ava应助盐焗小崔采纳,获得10
19秒前
21秒前
zwd完成签到 ,获得积分10
23秒前
江城一霸完成签到,获得积分10
25秒前
26秒前
殷琛发布了新的文献求助10
26秒前
27秒前
快乐小王完成签到,获得积分10
28秒前
Ricardo完成签到 ,获得积分10
31秒前
李健的小迷弟应助Moweikang采纳,获得10
33秒前
科研通AI6应助Cmax_采纳,获得10
34秒前
Lucas应助殷琛采纳,获得10
35秒前
35秒前
电池呦完成签到 ,获得积分10
35秒前
领导范儿应助翟不评采纳,获得10
37秒前
38秒前
Erren完成签到 ,获得积分10
38秒前
NexusExplorer应助称心的语梦采纳,获得10
40秒前
40秒前
吴大王发布了新的文献求助10
43秒前
null应助抱抱龙采纳,获得10
43秒前
A.y.w完成签到,获得积分10
44秒前
Moweikang发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627676
求助须知:如何正确求助?哪些是违规求助? 4714380
关于积分的说明 14962946
捐赠科研通 4785322
什么是DOI,文献DOI怎么找? 2555072
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476841