Review and prospect of data-driven techniques for load forecasting in integrated energy systems

计算机科学 电力系统 可再生能源 鉴定(生物学) 持续性 能量(信号处理) 运筹学 风险分析(工程) 工业工程 工程类 功率(物理) 医学 统计 物理 植物 生态学 数学 量子力学 电气工程 生物
作者
Jizhong Zhu,Hanjiang Dong,Weiye Zheng,Shenglin Li,Yanting Huang,Lei Xi
出处
期刊:Applied Energy [Elsevier]
卷期号:321: 119269-119269 被引量:182
标识
DOI:10.1016/j.apenergy.2022.119269
摘要

With synergies among multiple energy sectors, integrated energy systems (IESs) have been recognized lately as an effective approach to accommodate large-scale renewables and achieve environmental sustainability. The core of IES operation is to keep energy balance between supply and demand, where accurate load forecasting serves as one of the most crucial cornerstones. Recent advances in data-driven techniques have spawned a whole new branch of solution for load forecasting in IESs, which urges the need for a timely review accordingly. First, this overview reveals the uniqueness of the IES load forecasting problem compared with the conventional problem in electric power systems. The influential factors are much more complicated and volatile, while multivariate load series are forecasted simultaneously to address the coupling among different energy sectors. This uniqueness has contributed to increasing works and early breakthroughs for the IES load forecasting problem. Then, following the application and implementation procedures, essential issues of data-driven techniques in current works are reviewed with respect to the IES settings such as the variable decision, data preparation, feature engineering, model identification, and augmentation strategy adoption. The procedures are summarized according to current works and have covered all of the effective solutions for accurate forecasts. Finally, future trends and prospects of advanced topics therein are identified beyond current breakthroughs. Compatible with the distributed structure of IESs, federated learning is a promising solution for coordinated load forecasting among diverse energy sectors. On the other hand, automated machine learning builds deep learning and other data-driven models more intelligently to extremely improve load forecasting in complex IESs. The limited data issue in IESs also warrants further research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
害羞的天真完成签到 ,获得积分10
1秒前
蔷薇发布了新的文献求助10
1秒前
武雨寒完成签到,获得积分20
5秒前
南浔完成签到 ,获得积分10
5秒前
gabee完成签到 ,获得积分10
7秒前
雪糕发布了新的文献求助10
8秒前
一行白鹭上青天完成签到 ,获得积分0
9秒前
量子星尘发布了新的文献求助10
12秒前
龙腾岁月完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
沫荔完成签到 ,获得积分10
18秒前
xrzsxiaoli完成签到,获得积分10
18秒前
西瓜刀完成签到 ,获得积分10
22秒前
陈小青完成签到 ,获得积分10
22秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
tuanheqi应助科研通管家采纳,获得150
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
25秒前
朱洪帆完成签到,获得积分20
28秒前
飞儿完成签到 ,获得积分10
29秒前
33秒前
量子星尘发布了新的文献求助10
33秒前
王的故郷完成签到 ,获得积分10
34秒前
ccm完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
Jiang 小白完成签到,获得积分10
39秒前
牛马研究生完成签到 ,获得积分10
44秒前
夜话风陵杜完成签到 ,获得积分0
45秒前
xrzsxiaoli发布了新的文献求助10
45秒前
49秒前
49秒前
一只找论文的小云朵完成签到,获得积分10
53秒前
量子星尘发布了新的文献求助10
54秒前
jianglili完成签到,获得积分10
56秒前
量子星尘发布了新的文献求助10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936