Review and prospect of data-driven techniques for load forecasting in integrated energy systems

计算机科学 电力系统 可再生能源 鉴定(生物学) 持续性 能量(信号处理) 运筹学 风险分析(工程) 工业工程 工程类 功率(物理) 医学 统计 物理 植物 生态学 数学 量子力学 电气工程 生物
作者
Jizhong Zhu,Hanjiang Dong,Weiye Zheng,Shenglin Li,Yanting Huang,Lei Xi
出处
期刊:Applied Energy [Elsevier]
卷期号:321: 119269-119269 被引量:182
标识
DOI:10.1016/j.apenergy.2022.119269
摘要

With synergies among multiple energy sectors, integrated energy systems (IESs) have been recognized lately as an effective approach to accommodate large-scale renewables and achieve environmental sustainability. The core of IES operation is to keep energy balance between supply and demand, where accurate load forecasting serves as one of the most crucial cornerstones. Recent advances in data-driven techniques have spawned a whole new branch of solution for load forecasting in IESs, which urges the need for a timely review accordingly. First, this overview reveals the uniqueness of the IES load forecasting problem compared with the conventional problem in electric power systems. The influential factors are much more complicated and volatile, while multivariate load series are forecasted simultaneously to address the coupling among different energy sectors. This uniqueness has contributed to increasing works and early breakthroughs for the IES load forecasting problem. Then, following the application and implementation procedures, essential issues of data-driven techniques in current works are reviewed with respect to the IES settings such as the variable decision, data preparation, feature engineering, model identification, and augmentation strategy adoption. The procedures are summarized according to current works and have covered all of the effective solutions for accurate forecasts. Finally, future trends and prospects of advanced topics therein are identified beyond current breakthroughs. Compatible with the distributed structure of IESs, federated learning is a promising solution for coordinated load forecasting among diverse energy sectors. On the other hand, automated machine learning builds deep learning and other data-driven models more intelligently to extremely improve load forecasting in complex IESs. The limited data issue in IESs also warrants further research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小蘑菇应助典雅的依云采纳,获得10
刚刚
花火易逝发布了新的文献求助10
刚刚
刚刚
1秒前
温柔的向南完成签到,获得积分10
1秒前
羊羊羊发布了新的文献求助30
1秒前
jerome发布了新的文献求助10
1秒前
迅速芷容发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
咕噜完成签到 ,获得积分10
3秒前
RATHER发布了新的文献求助10
3秒前
斯文败类应助贪玩电源采纳,获得10
3秒前
etheral完成签到 ,获得积分10
4秒前
李澳男发布了新的文献求助10
4秒前
Cys完成签到,获得积分10
4秒前
狐尾完成签到,获得积分10
4秒前
科研通AI6应助dht采纳,获得10
4秒前
无花果应助yyz采纳,获得10
5秒前
称心映寒完成签到 ,获得积分10
5秒前
雪雪啊发布了新的文献求助10
5秒前
十一号发布了新的文献求助10
5秒前
星辰大海应助wise111采纳,获得10
6秒前
可乐完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
上官若男应助111111采纳,获得10
6秒前
7秒前
热爱完成签到,获得积分10
7秒前
7秒前
科研通AI6应助Cys采纳,获得10
7秒前
圆锥香蕉举报Rachel求助涉嫌违规
8秒前
刘宇发布了新的文献求助10
8秒前
Bronx完成签到,获得积分10
8秒前
侯康发布了新的文献求助10
8秒前
wangye完成签到,获得积分10
9秒前
斯文败类应助迅速芷容采纳,获得10
9秒前
给好评发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410082
求助须知:如何正确求助?哪些是违规求助? 4527588
关于积分的说明 14111576
捐赠科研通 4441954
什么是DOI,文献DOI怎么找? 2437768
邀请新用户注册赠送积分活动 1429705
关于科研通互助平台的介绍 1407763