Review and prospect of data-driven techniques for load forecasting in integrated energy systems

计算机科学 电力系统 可再生能源 鉴定(生物学) 持续性 能量(信号处理) 运筹学 风险分析(工程) 工业工程 工程类 功率(物理) 医学 统计 物理 植物 生态学 数学 量子力学 电气工程 生物
作者
Jizhong Zhu,Hanjiang Dong,Weiye Zheng,Shenglin Li,Yanting Huang,Lei Xi
出处
期刊:Applied Energy [Elsevier BV]
卷期号:321: 119269-119269 被引量:182
标识
DOI:10.1016/j.apenergy.2022.119269
摘要

With synergies among multiple energy sectors, integrated energy systems (IESs) have been recognized lately as an effective approach to accommodate large-scale renewables and achieve environmental sustainability. The core of IES operation is to keep energy balance between supply and demand, where accurate load forecasting serves as one of the most crucial cornerstones. Recent advances in data-driven techniques have spawned a whole new branch of solution for load forecasting in IESs, which urges the need for a timely review accordingly. First, this overview reveals the uniqueness of the IES load forecasting problem compared with the conventional problem in electric power systems. The influential factors are much more complicated and volatile, while multivariate load series are forecasted simultaneously to address the coupling among different energy sectors. This uniqueness has contributed to increasing works and early breakthroughs for the IES load forecasting problem. Then, following the application and implementation procedures, essential issues of data-driven techniques in current works are reviewed with respect to the IES settings such as the variable decision, data preparation, feature engineering, model identification, and augmentation strategy adoption. The procedures are summarized according to current works and have covered all of the effective solutions for accurate forecasts. Finally, future trends and prospects of advanced topics therein are identified beyond current breakthroughs. Compatible with the distributed structure of IESs, federated learning is a promising solution for coordinated load forecasting among diverse energy sectors. On the other hand, automated machine learning builds deep learning and other data-driven models more intelligently to extremely improve load forecasting in complex IESs. The limited data issue in IESs also warrants further research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由散漫大信球关注了科研通微信公众号
刚刚
申申如也发布了新的文献求助10
1秒前
hua完成签到,获得积分10
1秒前
1秒前
自由如风完成签到 ,获得积分10
1秒前
小马甲应助急雪回风采纳,获得10
1秒前
2秒前
2秒前
自由人发布了新的文献求助10
2秒前
忧郁水彤发布了新的文献求助10
3秒前
浮游应助狄鹤轩采纳,获得10
3秒前
十令发布了新的文献求助10
3秒前
里应为发布了新的文献求助10
4秒前
hua发布了新的文献求助10
4秒前
善学以致用应助jzd1991采纳,获得10
4秒前
xl完成签到,获得积分10
4秒前
4秒前
duyu完成签到,获得积分10
5秒前
不安依丝完成签到,获得积分10
5秒前
5秒前
研友_Lpa2On发布了新的文献求助10
5秒前
5秒前
qzs发布了新的文献求助10
6秒前
6秒前
852应助Villanellel采纳,获得10
6秒前
duyu发布了新的文献求助10
8秒前
传奇3应助提笔写未来C采纳,获得10
9秒前
春暖花开完成签到,获得积分10
9秒前
研友_nV2pkn发布了新的文献求助10
9秒前
joodeuk发布了新的文献求助10
9秒前
Denmark发布了新的文献求助10
10秒前
10秒前
正直芝麻完成签到,获得积分20
10秒前
pluto应助nnnd77采纳,获得10
10秒前
霖夏完成签到 ,获得积分10
11秒前
FashionBoy应助vn采纳,获得10
11秒前
善学以致用应助XXXTTT采纳,获得10
11秒前
小情绪应助狂野的夏柳采纳,获得10
11秒前
11秒前
顾矜应助火星上藏鸟采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4874504
求助须知:如何正确求助?哪些是违规求助? 4163770
关于积分的说明 12915000
捐赠科研通 3920917
什么是DOI,文献DOI怎么找? 2152576
邀请新用户注册赠送积分活动 1170846
关于科研通互助平台的介绍 1074699