已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Review and prospect of data-driven techniques for load forecasting in integrated energy systems

计算机科学 电力系统 可再生能源 鉴定(生物学) 持续性 能量(信号处理) 运筹学 风险分析(工程) 工业工程 工程类 功率(物理) 医学 统计 物理 植物 生态学 数学 量子力学 电气工程 生物
作者
Jizhong Zhu,Hanjiang Dong,Weiye Zheng,Shenglin Li,Yanting Huang,Lei Xi
出处
期刊:Applied Energy [Elsevier]
卷期号:321: 119269-119269 被引量:182
标识
DOI:10.1016/j.apenergy.2022.119269
摘要

With synergies among multiple energy sectors, integrated energy systems (IESs) have been recognized lately as an effective approach to accommodate large-scale renewables and achieve environmental sustainability. The core of IES operation is to keep energy balance between supply and demand, where accurate load forecasting serves as one of the most crucial cornerstones. Recent advances in data-driven techniques have spawned a whole new branch of solution for load forecasting in IESs, which urges the need for a timely review accordingly. First, this overview reveals the uniqueness of the IES load forecasting problem compared with the conventional problem in electric power systems. The influential factors are much more complicated and volatile, while multivariate load series are forecasted simultaneously to address the coupling among different energy sectors. This uniqueness has contributed to increasing works and early breakthroughs for the IES load forecasting problem. Then, following the application and implementation procedures, essential issues of data-driven techniques in current works are reviewed with respect to the IES settings such as the variable decision, data preparation, feature engineering, model identification, and augmentation strategy adoption. The procedures are summarized according to current works and have covered all of the effective solutions for accurate forecasts. Finally, future trends and prospects of advanced topics therein are identified beyond current breakthroughs. Compatible with the distributed structure of IESs, federated learning is a promising solution for coordinated load forecasting among diverse energy sectors. On the other hand, automated machine learning builds deep learning and other data-driven models more intelligently to extremely improve load forecasting in complex IESs. The limited data issue in IESs also warrants further research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
注恤明完成签到,获得积分10
1秒前
我是老大应助hudiefeifei306采纳,获得10
1秒前
4秒前
传奇3应助紧张的毛衣采纳,获得10
4秒前
纯情大蟑螂完成签到 ,获得积分10
6秒前
小巧尔曼关注了科研通微信公众号
8秒前
竺七完成签到 ,获得积分10
8秒前
8秒前
9秒前
无敌橙汁oh完成签到 ,获得积分10
9秒前
10秒前
Z_jx完成签到,获得积分10
13秒前
Spine发布了新的文献求助10
15秒前
红星路吃饼子的派大星完成签到 ,获得积分10
15秒前
儒雅涵易完成签到 ,获得积分10
15秒前
19秒前
21秒前
22秒前
23秒前
科研通AI6应助火星上念梦采纳,获得10
23秒前
23秒前
小巧尔曼发布了新的文献求助10
24秒前
Akim应助明亮的河马采纳,获得10
25秒前
25秒前
26秒前
jacob258完成签到 ,获得积分10
27秒前
小蘑菇应助aaa采纳,获得10
29秒前
马畅完成签到 ,获得积分10
30秒前
30秒前
笨笨的秋蝶完成签到,获得积分10
32秒前
Spine完成签到,获得积分10
33秒前
zz爱学习完成签到,获得积分10
34秒前
研友_VZG7GZ应助谦让的小龙采纳,获得10
34秒前
阳光的海露完成签到,获得积分10
37秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
Akim应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
37秒前
orixero应助科研通管家采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356070
求助须知:如何正确求助?哪些是违规求助? 4487906
关于积分的说明 13971244
捐赠科研通 4388674
什么是DOI,文献DOI怎么找? 2411197
邀请新用户注册赠送积分活动 1403730
关于科研通互助平台的介绍 1377447