Review and prospect of data-driven techniques for load forecasting in integrated energy systems

计算机科学 电力系统 可再生能源 鉴定(生物学) 持续性 能量(信号处理) 运筹学 风险分析(工程) 工业工程 工程类 功率(物理) 医学 统计 物理 植物 生态学 数学 量子力学 电气工程 生物
作者
Jizhong Zhu,Hanjiang Dong,Weiye Zheng,Shenglin Li,Yanting Huang,Lei Xi
出处
期刊:Applied Energy [Elsevier]
卷期号:321: 119269-119269 被引量:182
标识
DOI:10.1016/j.apenergy.2022.119269
摘要

With synergies among multiple energy sectors, integrated energy systems (IESs) have been recognized lately as an effective approach to accommodate large-scale renewables and achieve environmental sustainability. The core of IES operation is to keep energy balance between supply and demand, where accurate load forecasting serves as one of the most crucial cornerstones. Recent advances in data-driven techniques have spawned a whole new branch of solution for load forecasting in IESs, which urges the need for a timely review accordingly. First, this overview reveals the uniqueness of the IES load forecasting problem compared with the conventional problem in electric power systems. The influential factors are much more complicated and volatile, while multivariate load series are forecasted simultaneously to address the coupling among different energy sectors. This uniqueness has contributed to increasing works and early breakthroughs for the IES load forecasting problem. Then, following the application and implementation procedures, essential issues of data-driven techniques in current works are reviewed with respect to the IES settings such as the variable decision, data preparation, feature engineering, model identification, and augmentation strategy adoption. The procedures are summarized according to current works and have covered all of the effective solutions for accurate forecasts. Finally, future trends and prospects of advanced topics therein are identified beyond current breakthroughs. Compatible with the distributed structure of IESs, federated learning is a promising solution for coordinated load forecasting among diverse energy sectors. On the other hand, automated machine learning builds deep learning and other data-driven models more intelligently to extremely improve load forecasting in complex IESs. The limited data issue in IESs also warrants further research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coc发布了新的文献求助10
刚刚
NexusExplorer应助Ico采纳,获得50
刚刚
量子星尘发布了新的文献求助10
1秒前
科目三应助felinus采纳,获得10
1秒前
庸俗完成签到,获得积分10
1秒前
科研通AI6应助YYYYZ采纳,获得10
2秒前
4秒前
XIAOJU_U完成签到 ,获得积分10
5秒前
热心鱼发布了新的文献求助10
5秒前
CipherSage应助Quhang采纳,获得10
5秒前
机智的天宇完成签到,获得积分10
6秒前
7秒前
沧沧完成签到,获得积分10
7秒前
7秒前
dann完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
吱唔朱完成签到,获得积分20
10秒前
10秒前
小透明发布了新的文献求助150
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
zbzfp发布了新的文献求助10
13秒前
哈哈哈发布了新的文献求助10
14秒前
coc完成签到,获得积分20
14秒前
兰hua发布了新的文献求助10
14秒前
谢大喵发布了新的文献求助10
14秒前
毅诚菌发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637553
求助须知:如何正确求助?哪些是违规求助? 4743563
关于积分的说明 14999628
捐赠科研通 4795653
什么是DOI,文献DOI怎么找? 2562146
邀请新用户注册赠送积分活动 1521595
关于科研通互助平台的介绍 1481573