Review and prospect of data-driven techniques for load forecasting in integrated energy systems

计算机科学 电力系统 可再生能源 鉴定(生物学) 持续性 能量(信号处理) 运筹学 风险分析(工程) 工业工程 工程类 功率(物理) 医学 统计 物理 植物 生态学 数学 量子力学 电气工程 生物
作者
Jizhong Zhu,Hanjiang Dong,Weiye Zheng,Shenglin Li,Yanting Huang,Lei Xi
出处
期刊:Applied Energy [Elsevier BV]
卷期号:321: 119269-119269 被引量:182
标识
DOI:10.1016/j.apenergy.2022.119269
摘要

With synergies among multiple energy sectors, integrated energy systems (IESs) have been recognized lately as an effective approach to accommodate large-scale renewables and achieve environmental sustainability. The core of IES operation is to keep energy balance between supply and demand, where accurate load forecasting serves as one of the most crucial cornerstones. Recent advances in data-driven techniques have spawned a whole new branch of solution for load forecasting in IESs, which urges the need for a timely review accordingly. First, this overview reveals the uniqueness of the IES load forecasting problem compared with the conventional problem in electric power systems. The influential factors are much more complicated and volatile, while multivariate load series are forecasted simultaneously to address the coupling among different energy sectors. This uniqueness has contributed to increasing works and early breakthroughs for the IES load forecasting problem. Then, following the application and implementation procedures, essential issues of data-driven techniques in current works are reviewed with respect to the IES settings such as the variable decision, data preparation, feature engineering, model identification, and augmentation strategy adoption. The procedures are summarized according to current works and have covered all of the effective solutions for accurate forecasts. Finally, future trends and prospects of advanced topics therein are identified beyond current breakthroughs. Compatible with the distributed structure of IESs, federated learning is a promising solution for coordinated load forecasting among diverse energy sectors. On the other hand, automated machine learning builds deep learning and other data-driven models more intelligently to extremely improve load forecasting in complex IESs. The limited data issue in IESs also warrants further research efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助感动苡采纳,获得10
刚刚
雪山大地完成签到,获得积分10
刚刚
Beton_X发布了新的文献求助40
1秒前
2秒前
2秒前
嘿嘿嘿发布了新的文献求助10
2秒前
2秒前
3秒前
小肥鑫发布了新的文献求助10
4秒前
5秒前
scoot完成签到 ,获得积分10
5秒前
wjx关闭了wjx文献求助
5秒前
5秒前
蛋挞完成签到,获得积分20
5秒前
hhh完成签到 ,获得积分10
7秒前
爱学习发布了新的文献求助10
7秒前
张张发布了新的文献求助10
7秒前
wangsai0532完成签到,获得积分10
8秒前
8秒前
SciGPT应助1111111111111111采纳,获得10
8秒前
8秒前
Aaron完成签到 ,获得积分10
9秒前
xx完成签到,获得积分10
9秒前
嘿嘿嘿发布了新的文献求助10
9秒前
晗晗发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助小肥鑫采纳,获得10
10秒前
万能图书馆应助Joey采纳,获得10
12秒前
12秒前
13秒前
香蕉觅云应助EmmaLin采纳,获得10
13秒前
13秒前
77发布了新的文献求助10
14秒前
15秒前
FashionBoy应助泠漓采纳,获得10
15秒前
15秒前
15秒前
于大强完成签到,获得积分10
16秒前
共享精神应助晗晗采纳,获得10
17秒前
终抵星空发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676