Pragmatic Prediction of Excessive Length of Stay After Cervical Spine Surgery With Machine Learning and Validation on a National Scale

医学 接收机工作特性 机器学习 人工智能 样品(材料) 比例(比率) 急诊医学 计算机科学 内科学 地图学 化学 色谱法 地理
作者
Aly Valliani,Rui Feng,Michael L. Martini,Sean N. Neifert,Nora C. Kim,Jonathan S. Gal,Eric K. Oermann,John M. Caridi
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
卷期号:91 (2): 322-330 被引量:12
标识
DOI:10.1227/neu.0000000000001999
摘要

Extended postoperative hospital stays are associated with numerous clinical risks and increased economic cost. Accurate preoperative prediction of extended length of stay (LOS) can facilitate targeted interventions to mitigate clinical harm and resource utilization.To develop a machine learning algorithm aimed at predicting extended LOS after cervical spine surgery on a national level and elucidate drivers of prediction.Electronic medical records from a large, urban academic medical center were retrospectively examined to identify patients who underwent cervical spine fusion surgeries between 2008 and 2019 for machine learning algorithm development and in-sample validation. The National Inpatient Sample database was queried to identify cervical spine fusion surgeries between 2009 and 2017 for out-of-sample validation of algorithm performance. Gradient-boosted trees predicted LOS and efficacy was assessed using the area under the receiver operating characteristic curve (AUROC). Shapley values were calculated to characterize preoperative risk factors for extended LOS and explain algorithm predictions.Gradient-boosted trees accurately predicted extended LOS across cohorts, achieving an AUROC of 0.87 (SD = 0.01) on the single-center validation set and an AUROC of 0.84 (SD = 0.00) on the nationwide National Inpatient Sample data set. Anterior approach only, elective admission status, age, and total number of Elixhauser comorbidities were important predictors that affected the likelihood of prolonged LOS.Machine learning algorithms accurately predict extended LOS across single-center and national patient cohorts and characterize key preoperative drivers of increased LOS after cervical spine surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无限的芮发布了新的文献求助10
1秒前
2秒前
2秒前
梁大海完成签到,获得积分10
2秒前
gjq发布了新的文献求助10
3秒前
Lze驳回了大模型应助
3秒前
玛卡巴卡31完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
BenchYang发布了新的文献求助10
5秒前
上官若男应助addestay采纳,获得10
7秒前
自然墨镜发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
实验好难应助果果采纳,获得10
9秒前
10秒前
科研通AI5应助gjq采纳,获得10
11秒前
Owen应助小贾爱喝冰美式采纳,获得10
11秒前
1111发布了新的文献求助10
11秒前
Owen应助彩色的紫南采纳,获得10
12秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
zz发布了新的文献求助10
14秒前
zdesfsfa完成签到,获得积分10
15秒前
陶然共忘机完成签到 ,获得积分10
16秒前
kytlzq完成签到,获得积分10
17秒前
17秒前
丘比特应助不安一鸣采纳,获得10
17秒前
科研通AI5应助立军采纳,获得10
17秒前
欢喜小霸王完成签到,获得积分10
17秒前
调皮秋凌发布了新的文献求助10
19秒前
YX完成签到,获得积分10
19秒前
19秒前
汉堡包应助刻苦的源智采纳,获得10
20秒前
addestay完成签到 ,获得积分10
22秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
sansansan发布了新的文献求助10
26秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664299
求助须知:如何正确求助?哪些是违规求助? 3224405
关于积分的说明 9757262
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012