Multiple partial discharge sources separation using a method based on laplacian score and correlation coefficient techniques

局部放电 模式识别(心理学) 聚类分析 相关系数 特征选择 变压器 计算机科学 相关性 人工智能 数据库扫描 哈达玛变换 拉普拉斯算子 小波 算法 数据挖掘 数学 工程类 机器学习 电压 相关聚类 数学分析 几何学 树冠聚类算法 电气工程
作者
Vahid Javandel,Mehdi Vakilian,Keyvan Firuzi
出处
期刊:Electric Power Systems Research [Elsevier]
卷期号:210: 108070-108070
标识
DOI:10.1016/j.epsr.2022.108070
摘要

• Laplacian score is an effective method to select high performance features in terms of discrimination of multiple PD source types. • Similar features of PD signals do not add much more information in discrimination of multiple PD sources. • Correlation coefficient is a method to evaluation of similarity between different features. • Different sets of features in different case of multiple PD source types presence, are selected by feature selection algorithm. Partial discharge (PD) activity can be destructive to the transformer insulation, and ultimately may result in total breakdown of the insulation. Partial discharge sources identification in a power transformer enables the operator to evaluate the transformer insulation condition during its lifetime. In order to identify the PD source; in the case of presence of multiple sources; the first step is to capture the PD signals and to extract their specific features. In this contribution, the frequency domain analysis, the time domain analysis and the wavelet transform are employed for feature extraction purpose. In practice, there might be plenty of features, and in each scenario, only some of them may be effective. Therefore, among the extracted features, those useful for discrimination of the multiple PD sources are studied. Then, a method, using laplacian score, and the correlation coefficient algorithms; is developed for feature selection. In order to discriminate among the multiple partial discharge sources, a density-based algorithm spatial clustering of applications with noise (DBSCAN) have been employed to cluster among available PD sources and the noise. The results of some case studies demonstrated the great ability of this method in proper discrimination of multiple PD sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清平道人应助Bab采纳,获得10
刚刚
1秒前
water发布了新的文献求助10
1秒前
香蕉觅云应助hello采纳,获得30
1秒前
未晞发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
fillippo99应助Badada采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
沧浪发布了新的文献求助10
4秒前
科研通AI2S应助CGBY采纳,获得10
5秒前
孝顺的班完成签到,获得积分10
5秒前
小半发布了新的文献求助10
5秒前
wahaha发布了新的文献求助10
6秒前
小二郎应助YY采纳,获得10
6秒前
今后应助YE采纳,获得10
7秒前
7秒前
忘尘发布了新的文献求助10
7秒前
孝顺的班发布了新的文献求助10
7秒前
saikema完成签到,获得积分20
7秒前
cj发布了新的文献求助10
8秒前
彭a发布了新的文献求助10
9秒前
陈大大完成签到,获得积分10
9秒前
深情安青应助芬栀采纳,获得10
10秒前
10秒前
背后白梦发布了新的文献求助10
11秒前
归零儿完成签到,获得积分10
11秒前
11秒前
坚强的水果完成签到,获得积分10
12秒前
Owen应助瑶瑶乐采纳,获得10
12秒前
大模型应助活力数据线采纳,获得10
12秒前
13秒前
shd-fufa完成签到,获得积分10
13秒前
NexusExplorer应助烟火会翻滚采纳,获得10
13秒前
14秒前
酷波er应助老实皮卡丘采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313305
求助须知:如何正确求助?哪些是违规求助? 2945741
关于积分的说明 8526806
捐赠科研通 2621466
什么是DOI,文献DOI怎么找? 1433588
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650585